植草混凝土细观结构特征及其对抗压强度的影响

冯锡涛, 江辉, 刘瑶, 蔡协琦, 季国荣, 邓必伟

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (3) : 178-187.

PDF(9789 KB)
PDF(9789 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (3) : 178-187. DOI: 10.11988/ckyyb.20231246
水工结构与材料

植草混凝土细观结构特征及其对抗压强度的影响

作者信息 +

Fine Structure Characteristics of Grass-planted Concrete and Its Effect on Compressive Strength

Author information +
文章历史 +

摘要

植草混凝土细观结构是影响混凝土抗压强度的关键因素,研究其物理化学性能,对植生型多孔结构的混凝土性能提升具有重要意义。对植草混凝土进行了Rapid Air 457孔隙结构测定、SEM电镜、XRD衍射、力学性能试验与分析,结果表明:硅灰石粉和粉煤灰显著优化了植草混凝土的细观孔隙结构,随着硅灰石粉和粉煤灰掺量的增加,细观孔隙含量分别降低至0.85%和0.22%,平均孔径均可以减小至80 μm以下,并引起间距系数发生改变,进而促使植草混凝土的28 d最大抗压强度分别提升至10.1 MPa和11.3 MPa。根据电镜和衍射试验结果,结合DES分析,发现植草混凝土中钙硅比减小,证实了2种掺合料的水化产物使得植草混凝土胶凝材料内部结构更加致密,并对植草混凝土抗压强度产生积极影响,填补了植草混凝土细观孔隙结构研究的空白。

Abstract

The fine structure of grass-planted concrete plays a crucial role in determining its compressive strength. Understanding its physicochemical properties is essential for enhancing the performance of porous grass-planted concrete. We investigated the pore structure using Rapid Air 457 device, examined the SEM, XRD diffraction, and mechanical properties of grass-planted concrete. Results revealed that increasing the dosage of silica fume powder and fly ash reduced the finescale pore content to 0.85% and 0.22%, respectively. The average pore size decreased to less than 80 μm, and the spacing coefficient was significantly altered, which enhanced the 28-day maximum compressive strength of the grass-planted concrete up to 10.1 MPa and 11.3 MPa, respectively. SEM and XRD diffraction tests together with Dessication Susceptibility (DES) analysis unveiled that the mass ratio of Ca to Si in grass-planted concrete declined, indicating that the hydration products of silica fume powder and fly ash densified the internal structure of the cementitious material of grass-planted concrete, positively affecting its compressive strength. This research fills a gap in the study of the fine pore structure of grass-planted concrete.

关键词

植草混凝土 / 细观结构 / 抗压强度 / 硅灰石粉 / 粉煤灰

Key words

grass-planted concrete / mesoscopic structure / compressive strength / silica fume / fly ash

引用本文

导出引用
冯锡涛, 江辉, 刘瑶, . 植草混凝土细观结构特征及其对抗压强度的影响[J]. 长江科学院院报. 2025, 42(3): 178-187 https://doi.org/10.11988/ckyyb.20231246
FENG Xi-tao, JIANG Hui, LIU Yao, et al. Fine Structure Characteristics of Grass-planted Concrete and Its Effect on Compressive Strength[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(3): 178-187 https://doi.org/10.11988/ckyyb.20231246
中图分类号: TU528 (混凝土及混凝土制品)   

参考文献

[1]
江辉, 刘青, 黄宝强, 等. 农村小河流生态固岸新模式探讨[J]. 中国农村水利水电, 2014(12): 56-59.
摘要
中小河流治理工程是当前我国的一项重要的水利工程建设任务,它有力提高了城镇河流的防洪能力,但河流的生态功能方面存在一定的片面性和盲目性。本文以江西省农村小河流的实地调研为基础,结合中小河流治理的现状,分析农村小河流现状及固岸存在的问题,在对比中小河流工程护坡治理特征差异的同时,探讨以防洪、生态为一体的农村小河流生态固岸新模式,为今后小河流治理的规划设计和建设摸清道路。
(JIANG Hui, LIU Qing, HUANG Bao-qiang, et al. Construction of New Modes of Ecological Reinforcement Strands in the Rural Small Rivers[J]. China Rural Water and Hydropower, 2014(12): 56-59. (in Chinese))
中小河流治理工程是当前我国的一项重要的水利工程建设任务,它有力提高了城镇河流的防洪能力,但河流的生态功能方面存在一定的片面性和盲目性。本文以江西省农村小河流的实地调研为基础,结合中小河流治理的现状,分析农村小河流现状及固岸存在的问题,在对比中小河流工程护坡治理特征差异的同时,探讨以防洪、生态为一体的农村小河流生态固岸新模式,为今后小河流治理的规划设计和建设摸清道路。
[2]
KANG K, KIM W J, PARK S J. Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments[J]. Journal of the Korean Society of Agricultural Engineers, 2016, 58(2): 1-9.
[3]
KIM H H, PARK C G. Performance Evaluation and Field Application of Porous Vegetation Concrete Made with By-product Materials for Ecological Restoration Projects[J]. Sustainability, 2016, 8(4): 294.
[4]
江辉, 刘瑶, 黄海清, 等. 适于小河流的植草混凝土配合比优化设计及应用[J]. 硅酸盐通报, 2019, 38(5):1349-1355.
摘要
植草混凝土应用于小河流生态护岸是国家生态文明发展的必然趋势,适宜的配合比是植草混凝土护岸技术的关键环节.通过正交试验和单因子变量试验法,定量分析了主要设计参数和组分用量对植草混凝土性能的影响,并示范应用.结果表明:粗骨料级配、目标空隙率、液固比是植草混凝土配合比设计的关键指标;粗骨料级配为15~30 mm,目标空隙率为20%,液固比为0.25,能够更好地满足小河流植草混凝土抗压强度、空隙率和pH值等指标要求;植草混凝土制备的适宜配合比为碎石用量(1480±20)kg/m3,砂用量(175±25)kg/m3,水泥用量(235±15)kg/m3,水用量(105±5)L/m3,SR-4用量为水泥用量的1.5% ~2.5%;通过工程示范,现浇植草混凝土能够达到小河流设计的强度要求,植被覆盖率达到89%,可以满足防洪和生态要求.研究成果可为植草混凝土生态护岸的推广应用提供技术支持.
(JIANG Hui, LIU Yao, HUANG Hai-qing, et al. Mixture Ratio Optimal Design of Porous Vegetation Concrete and Its Application in Small River[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5):1349-1355.(in Chinese))
植草混凝土应用于小河流生态护岸是国家生态文明发展的必然趋势,适宜的配合比是植草混凝土护岸技术的关键环节.通过正交试验和单因子变量试验法,定量分析了主要设计参数和组分用量对植草混凝土性能的影响,并示范应用.结果表明:粗骨料级配、目标空隙率、液固比是植草混凝土配合比设计的关键指标;粗骨料级配为15~30 mm,目标空隙率为20%,液固比为0.25,能够更好地满足小河流植草混凝土抗压强度、空隙率和pH值等指标要求;植草混凝土制备的适宜配合比为碎石用量(1480±20)kg/m3,砂用量(175±25)kg/m3,水泥用量(235±15)kg/m3,水用量(105±5)L/m3,SR-4用量为水泥用量的1.5% ~2.5%;通过工程示范,现浇植草混凝土能够达到小河流设计的强度要求,植被覆盖率达到89%,可以满足防洪和生态要求.研究成果可为植草混凝土生态护岸的推广应用提供技术支持.
[5]
吴春波, 崔力谨. 植草混凝土强度性能影响因素的研究进展[J]. 水利水电技术(中英文), 2021, 52(增刊2): 6-9.
(WU Chun-bo, CUI Li-jin. Research Progress on Influencing Factors of Strength of Porous Vegetation Concrete[J]. Water Resources and Hydropower Engineering, 2021, 52 (Supp.2): 6-9. (in Chinese))
[6]
胡勇有, 胡春明, 谢磊, 等. 植生型生态混凝土孔隙状态对植物生长的影响[J]. 华南理工大学学报(自然科学版), 2006, 34(12): 5-9.
(HU Yong-you, HU Chun-ming, XIE Lei, et al. Effect of Void Status in Eco-concrete for Planting on Plant Growth[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(12): 5-9. (in Chinese))
[7]
李维维, 高宽能, 杨华山, 等. 植生型“夹心” 生态混凝土的试验研究[J]. 混凝土, 2020(4): 110-113, 117.
(LI Wei-wei, GAO Kuan-neng, YANG Hua-shan, et al. Experimental Study on Planting Type“Sandwich” Ecological Concrete[J]. Concrete, 2020(4):110-113, 117. (in Chinese))
[8]
SUMANASOORIYA M S, NEITHALATH N. Pore Structure Features of Pervious Concretes Proportioned for Desired Porosities and Their Performance Prediction[J]. Cement and Concrete Composites, 2011, 33(8): 778-787.
[9]
CHINDAPRASIRT P, HATANAKA S, CHAREERAT T, et al. Cement Paste Characteristics and Porous Concrete Properties[J]. Construction and Building Materials, 2008, 22(5): 894-901.
[10]
MANAHILOH K N, MUHUNTHAN B, KAYHANIAN M, et al. X-ray Computed Tomography and Nondestructive Evaluation of Clogging in Porous Concrete Field Samples[J]. Journal of Materials in Civil Engineering, 2012, 24(8):1103-1109.
[11]
刘婷婷, 温福胜, 赵村罡, 等. 现浇植被混凝土细观孔隙结构分析及渗流模拟[J]. 中国农村水利水电, 2020(10):88-93,105.
摘要
以目标孔隙率24%,水胶比0.32,粗骨料粒径16~26 mm的现浇植被混凝土为研究对象,通过计算机断层(CT)扫描技术获取试件的序列图像,采用Image J软件从细观角度分析二维平面孔隙特征;采用Avizo软件重建孔隙三维细观模型,分析孔隙空间结构并进行单相渗流模拟。结果表明:孔隙直径、孔隙面积均呈单峰分布,孔隙大小比较均匀;孔隙形状接近一个正圆;平面孔隙率平均值与实测孔隙率相差不大;计盒维数法测得的分形维数表明孔隙具有较好的分形特征;三维孔隙空间分布范围与二维定量分析具有一致性;孔喉尺寸呈正态分布,表明孔隙间连通性良好;压力梯度分布及流线分布有利于分析植被混凝土的渗流机理,模拟结果与试验结果吻合较好,验证了重建的三维模型的可靠性。
(LIU Ting-ting, WEN Fu-sheng, ZHAO Cun-gang, et al. Mesoscale Pore Structure Analysis and Seepage Simulation of Cast-in-situ Vegetation Concrete[J]. China Rural Water and Hydropower, 2020(10):88-93,105. (in Chinese))
[12]
CHUNG Sang-yeop, HAN Tong-seok. Percolation Analysis on Porous Concrete Using Microstructural CT Image Processing and Probability Distribution Functions[J]. Journal of The Korean Society of Civil Engineering A, 2012, 32(1A): 31-37.
[13]
POON C S, LAM L, WONG Y L. A Study on High Strength Concrete Prepared with Large Volumes of Low Calcium Fly Ash[J]. Cement and Concrete Research, 2000, 30(3): 447-455.
[14]
高明, 刘宁, 陈兵. 微硅粉改性磷酸镁水泥砂浆试验研究[J]. 建筑材料学报, 2020, 23(1): 29-34.
(GAO Ming, LIU Ning, CHEN Bing. Effect of Silica Fume on Properties of Magnesium Phosphate Cement Mortar[J]. Journal of Building Materials, 2020, 23(1): 29-34. (in Chinese))
[15]
UCHIKAWA H, UCHIDA S, HANEHARA S. Measuring Method of Pore Structure in Hardened Cement Paste, Mortar and Concrete[J]. IL Cimento, 1991, 88(2): 67-90.
[16]
IGARASHI S I, WATANABE A, KAWAMURA M. Evaluation of Capillary Pore Size Characteristics in High-strength Concrete at Early Ages[J]. Cement and Concrete Research, 2005, 35(3): 513-519.
[17]
焦楚杰, 彭兰, 谭思琪, 等. 植生混凝土成型方式研究[J]. 混凝土, 2021(12): 128-131.
(JIAO Chu-jie, PENG Lan, TAN Si-qi, et al. Study on the Forming Method of Plant Concrete[J]. Concrete, 2021(12): 128-131. (in Chinese))
[18]
PADE C, JAKOBSEN U H, ELSEN J. A New Automatic Analysis System for Analyzing the Air Void System in Hardened Concrete[C]// Proceedings of the 24th International Conference on Cement Microscopy. San Diego, California. April 8-11, 2002:204-213.
[19]
GB 50010—2002, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2002.
(GB 50010—2002, Code for Design of Concrete Structures[S]. Beijing: China Architecture Industry Press, 2002. (in Chinese))
[20]
骆冰冰, 毕巧巍. 混杂纤维自密实混凝土孔结构对抗压强度影响的试验研究[J]. 硅酸盐通报, 2012, 31(3):626-630.
摘要
采用压汞法对混杂纤维自密实混凝土进行微观孔结构试验,并进行抗压强度试验,分析了混杂纤维自密实混凝土孔结构的孔隙率、孔径尺寸与级配、孔分布特征与强度的关系,得出混杂纤维自密实混凝土孔结构与抗压强度的关系趋势.研究结果表明,在自密实混凝土中混杂掺人玄武岩纤维和聚丙烯纤维,其微观孔结构的改善对抗压强度的提高有着直接的影响.
(LUO Bing-bing, BI Qiao-wei. Experimental Study on the Influence of Pore Structure of Hybrid Fibers Self-compacting Concrete on Compressive Strength[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(3):626-630. (in Chinese))
采用压汞法对混杂纤维自密实混凝土进行微观孔结构试验,并进行抗压强度试验,分析了混杂纤维自密实混凝土孔结构的孔隙率、孔径尺寸与级配、孔分布特征与强度的关系,得出混杂纤维自密实混凝土孔结构与抗压强度的关系趋势.研究结果表明,在自密实混凝土中混杂掺人玄武岩纤维和聚丙烯纤维,其微观孔结构的改善对抗压强度的提高有着直接的影响.
[21]
董瑞鑫, 申向东, 薛慧君, 等. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 20, 36(12):105-109.
(DONG Rui-xin, SHEN Xiang-dong, XUE Hui-jun, et al. Influence of Air Void Parameters of Aeolian Sand Concrete on Its Strength[J]. Materials Reports, 20, 36(12):105-109. (in Chinese))
[22]
甘新平. CSH凝胶结构的探讨[J]. 硅酸盐学报, 1996, 24(6): 23-28.
(GAN Xin-ping. Study on the Structure of CSH Gel[J]. Journal of the Chinese Ceramic Society, 1996, 24(6): 23-28. (in Chinese))
[23]
陶祥令, 刘辉, 程雷. 植被生态混凝土制备工艺研究进展[J]. 材料导报, 2016, 30(13): 152-158.
(TAO Xiang-ling, LIU Hui, CHENG Lei. Research Status of Preparation Process for Vegetation Ecological Concrete[J]. Materials Review, 2016, 30(13): 152-158. (in Chinese))
[24]
魏风艳, 吕忆农, 兰祥辉, 等. 粉煤灰水泥基材料的水化产物[J]. 硅酸盐学报, 2005, 33(1): 52-56.
(WEI Feng-yan, Yi-nong, LAN Xiang-hui, et al. Hydration Products of Fly Ash cement-based Material[J]. Journal of the Chinese Ceramic Society, 2005, 33(1): 52-56. (in Chinese))
[25]
马骁, 何巨鹏, 谢雪鹏, 等. 基于分子动力学模拟的C-S-H凝胶和C-A-S-H凝胶研究[J]. 混凝土, 2019(1):118-122.
(MA Xiao, HE Ju-peng, XIE Xue-peng, et al. Study of C-S-H Gel and C-A-S-H Gel Based on Molecular Dynamics Simulation[J]. Concrete, 2019(1): 118-122. (in Chinese))
[26]
肖力光, 李正鹏. 复合矿物掺合料对高性能混凝土强度的研究[J]. 应用化工, 2023, 52(8): 2284-2287.
(XIAO Li-guang, LI Zheng-peng. A Study of the Potency of Composite Mineral Amalgamated with High-performance Concrete[J]. Applied Chemical Industry, 2023, 52(8): 2284-2287. (in Chinese))
[27]
徐文, 武小雷. 钙硅比对水热合成水化硅酸钙实验的影响研究[J]. 硅酸盐通报, 2018, 37(4): 1294-1298.
摘要
针对钙硅比对水化硅酸钙产品成分与结构影响较大的现象,为了分析这种影响规律,实验过程中按照不同钙硅比配入原料,采用水热合成法制备水化硅酸钙,实验最终得到了钙硅比对产物水化硅酸钙物相微观结构以及聚合度的影响规律.对实验产物进行XRD分析发现,随着钙硅比的升高,分析结果中出现了Tobermorite(托勃莫来石)以及硬钙硅石的相.通过对产物SEM分析发现,随着钙硅比的升高,产物颗粒表面微观结构变得疏松.通过红外分析发现,产物聚合度随着钙硅比的升高而降低.
(XU Wen, WU Xiao-lei. Influence Research of the Calcium Silicon Ratio on the Synthetizing Hydrated Calcium Silicate[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1294-1298. (in Chinese))
The hydrated calcium silicate was synthesized in hydrothermal process with different calcium silicon ratio to analyse its impact on the microstructure and polymerization degree of hydrated calcium silicate as the calcium silicon ratio has higher impact on the constitutes and structure of hydrated calcium silicate.With the increase of calcium silicon ratio, the tobermorite and xonotlite were discovered in the XRD.And with the increase of calcium silicon ratio, the surface microstructure of the synthesized particles became looser as shown in the SEM images.By analyzing the IR analysis results, it can be noticed that the polymerization degree decreased with the increase of calcium silicon ratio.
[28]
陈友治, 钟浩轩, 殷伟淞, 等. 钙硅比对水化硅酸钙结构、Zeta电势及减水剂吸附性能的影响分析[J]. 硅酸盐通报, 2020, 39(6): 1798-1804.
摘要
为探究水化硅酸钙(C-S-H)晶核剂对掺减水剂混凝土的影响,研究了不同钙硅比的水化硅酸钙对聚羧酸减水剂的吸附性能.通过120℃水热反应法制备水化硅酸钙,并采用XRD、SEM和29Si NMR对所制备的Ca/Si为1.0、1.3和1.6的水化硅酸钙样品进行表征;同时通过Zeta电势、总有机碳分析(TOC)和流动性分析探究了由钙硅比的变化对水化硅酸钙的Zeta电势和减水剂吸附性能以及对水泥浆体流动度的影响.试验结果表明,水化硅酸钙的链长和结晶度的优劣主要受到钙硅比的影响,钙硅比增大,链长变短,结晶度变差;水化硅酸钙的Zeta电势随着钙硅比增加而增大;C-S-H在超纯水中的电导率随钙硅比增加而变大;在不同氢氧化钙浓度的溶液中,Ca/Si为1.6的样品较1.0样品能吸附更多的减水剂;并且拥有较好的浆体流动性能.因此,高钙硅比的水化硅酸钙对聚羧酸减水剂拥有较强的吸附能力,并且对含聚羧酸减水剂的水泥浆体流动性能影响相对较小.
(CHEN You-zhi, ZHONG Hao-xuan, YIN Wei-song, et al. Effect of Calcium-silicon Ratio of Calcium Silicate Hydrate on Its Structure, Zeta Potential and Adsorption Capacity of Superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1798-1804. (in Chinese))
为探究水化硅酸钙(C-S-H)晶核剂对掺减水剂混凝土的影响,研究了不同钙硅比的水化硅酸钙对聚羧酸减水剂的吸附性能.通过120℃水热反应法制备水化硅酸钙,并采用XRD、SEM和29Si NMR对所制备的Ca/Si为1.0、1.3和1.6的水化硅酸钙样品进行表征;同时通过Zeta电势、总有机碳分析(TOC)和流动性分析探究了由钙硅比的变化对水化硅酸钙的Zeta电势和减水剂吸附性能以及对水泥浆体流动度的影响.试验结果表明,水化硅酸钙的链长和结晶度的优劣主要受到钙硅比的影响,钙硅比增大,链长变短,结晶度变差;水化硅酸钙的Zeta电势随着钙硅比增加而增大;C-S-H在超纯水中的电导率随钙硅比增加而变大;在不同氢氧化钙浓度的溶液中,Ca/Si为1.6的样品较1.0样品能吸附更多的减水剂;并且拥有较好的浆体流动性能.因此,高钙硅比的水化硅酸钙对聚羧酸减水剂拥有较强的吸附能力,并且对含聚羧酸减水剂的水泥浆体流动性能影响相对较小.

基金

国家自然科学基金项目(51869012)
国家自然科学基金项目(42161055)

编辑: 陈 敏
PDF(9789 KB)

Accesses

Citation

Detail

段落导航
相关文章

/