为满足泡沫混凝土作为隧道围岩支护预留变形层填充介质力学性能要求,研制了一种微量碳纳米管增强粉煤灰泡沫混凝土(CNTAFC)的新型变形层填充材料。基于单因素分析,利用Box-Behnken Design响应面法,建立CNTAFC抗压强度预测模型,对其制备参数进行优化。此外,联合单轴压缩试验与数字散斑采集技术,对CNTAFC试样的荷载变形特征进行研究。结果表明:CNTAFC抗压强度回归模型合理有效,当碳纳米管(CNTs)掺量0.13%,骨胶比24.75%,粉煤灰掺量70.57%时,其28 d抗压强度预测值最大为5.936 MPa,误差为2.54%;CNTAFC试样提高了峰值强度,延性增强,其平均峰后强度大于峰值强度的60%,峰后曲线应变范围占极限应变的30%以上,满足围岩卸压吸能材料的性能要求;CNTAFC变形局部化启动可分为应变条件和应力条件,且选择应变确定条件为宜;在变形局部化启动时,CNTAFC强度接近峰值强度,泊松比显著提升。
Abstract
To meet the mechanical performance requirements of foam concrete as the filling material for the reserved deformation layer of tunnel surrounding rock support, a novel deformable filling material called micro carbon nanotubes reinforced fly ash foam concrete (CNTAFC) was developed. The preparation parameters of CNTAFC were optimized by establishing a compressive strength prediction model using the Box-Behnken Design response surface methodology based on single factor analysis. Furthermore, the load deformation characteristics of CNTAFC specimens were investigated through a combination of uniaxial compression tests and digital speckle correlation measurement (DSCM). Results demonstrate the reasonability and effectiveness of the CNTAFC compressive strength regression model. With a CNT (carbon nanotube) content of 0.13%, a bone-cement ratio of 24.75%, and a fly ash content of 70.57%, the predicted 28-day compressive strength is 5.936 MPa, with an error of 2.54%. The CNTAFC sample exhibits improved peak strength and enhanced ductility. The average post-peak strength exceeds 60% of the peak strength, and the post-peak strain range accounts for over 30% of the ultimate strain. These characteristics satisfy the performance requirements for pressure relief and energy absorption in surrounding rock. The localized initiation of CNTAFC deformation can be distinguished under strain and stress conditions, of which the strain condition is more appropriate for determining deformation localization. When deformation localization is activated, the CNTAFC strength approaches its peak strength, and the Poisson's ratio increases significantly.
关键词
泡沫混凝土 /
碳纳米管 /
粉煤灰 /
制备 /
变形特性 /
响应面法 /
抗压强度
Key words
foamed concrete /
carbon nanotubes /
fly ash /
preparation /
deformation properties /
response surface method /
compressive strength
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张向东, 李亦芃, 李庆文, 等. 考虑流固耦合效应深埋富水隧道围岩稳定性研究[J]. 长江科学院院报, 2018, 35(10): 98-103, 108.
[2] ZHANG S K, WANG Z M, LU L, et al. Preparation and Load-Deformation Characterization of Carbon Nanotube-reinforced Foam Concrete[J]. Construction and Building Materials, 2020, 254: 119-297.
[3] 张 磊,赵倬跃,张 楠,等. 生土泡沫混凝土的制备及其性能[J]. 建筑材料学报,2022,25(2):199-205.
[4] 慕 欣,陈洪祥,陈喜坤.泡沫混凝土材料静、动力特性试验研究[J]. 长江科学院院报,2017,34(3):126-129.
[5] 李永靖, 王 松, 印建文, 等. 隧道穿越突出煤层预留安全岩柱失稳分析方法[J]. 长江科学院院报, 2023, 40(8): 97-104, 111.
[6] WU G J, CHEN W Z, TAN X J, et al. Performance of New Type of Foamed Concrete in Supporting Tunnel in Squeezing Rock[J]. International Journal of Geomechanics, 2020, 20(2): 04019173.
[7] 田 云, 陈卫忠, 田洪铭, 等. 考虑软岩强度时效弱化的缓冲层让压支护设计研究[J]. 岩土力学, 2020, 41(增刊1): 237-245.
[8] 刘 军, 齐 玮, 刘润清, 等. 粉煤灰对泡沫混凝土物理力学性能的影响[J]. 材料导报, 2015, 29(16): 111-114.
[9] 王小娟, 刘 路, 贾昆程, 等. 陶粒泡沫混凝土的力学性能及吸能特性[J]. 建筑材料学报, 2021, 24(1): 207-215.
[10] 江 旋, 季 韬, 徐 维, 等. 聚丙烯纤维掺量对碱矿渣泡沫混凝土砌块性能影响的研究[J]. 新型建筑材料, 2021, 48(4): 95-98, 114.
[11] 王静文, 王 伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[12] 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.
[13] 范然森, 程 新, 詹炳根. 玄武岩纤维泡沫混凝土性能研究及抗裂评价[J]. 合肥工业大学学报(自然科学版), 2020, 43(9): 1223-1228.
[14] 詹炳根, 郭建雷, 林兴胜. 玻璃纤维增强泡沫混凝土性能试验研究[J]. 合肥工业大学学报(自然科学版), 2009, 32(2): 226-229.
[15] BALOCH W L,KHUSHNOOD R A,KHALIQ W.Influence of Multi-walled Carbon Nanotubes on the Residual Performance of Concrete Exposed to High Temperatures[J]. Construction and Building Materials, 2018,185:44-56.
[16] VILELA R V,LUDVIG P,CONST NCIO T A C,et al.The Influence of Carbon Nanotubes on the Fracture Energy, Flexural and Tensile Behavior of Cement Based Composites[J]. Construction and Building Materials,2019,209:1-8.
[17] 郑冰淼, 陈嘉琪, 施 韬, 等. 多壁碳纳米管增强混凝土的断裂性能[J]. 硅酸盐学报, 2021, 49(11): 2502-2508.
[18] 施 韬, 李泽鑫, 李闪闪. 碳纳米管增强水泥基复合材料的自收缩及抗裂性能[J]. 复合材料学报, 2019, 36(6): 1528-1535.
[19] SINDU B S, SASMAL S. Properties of Carbon Nanotube Reinforced Cement Composite Synthesized Using Different Types of Surfactants[J]. Construction and Building Materials, 2017,155:389-399.
[20] 宋 强, 张 鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410.
[21] 张文华, 杨冯皓, 吕毓静, 等. 泡沫混凝土的稳泡措施和机理研究进展[J]. 硅酸盐学报, 2021, 49(10): 2266-2275.
[22] 邢小光, 许金余, 白二雷, 等. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. 材料导报, 2018, 32(8): 1367-1372.
[23] LI S C, WANG Q, WANG H T, et al. Model Test Study on Surrounding Rock Deformation and Failure Mechanisms of Deep Roadways with Thick Top Coal[J]. Tunnelling and Underground Space Technology, 2015, 47: 52-63.
[24] 王学滨, 侯文腾, 潘一山, 等. 基于数字图像相关方法的单轴压缩煤样应变局部化过程试验[J]. 煤炭学报, 2018, 43(4): 984-992.
[25] 宋义敏, 邢同振, 邓琳琳, 等. 不同加载速率下岩石变形场演化试验研究[J]. 岩土力学, 2017, 38(10): 2773-2779, 2788.