为了探究草本植物根系类型和分布对根土复合体无侧限抗压强度的影响,采用图片像素转换法确定轴根型紫花地丁、根蘖型苦荬菜和根茎型水麦冬在不同土壤深度的根系分布特征;并利用无侧限抗压试验获取3种草本植物根土复合体的应力-应变曲线,量化根土复合体的抗压强度,探究根土复合体破坏面根系参数与黏聚力增量的关系。研究结果表明,在0~8 cm土壤深度范围内,随土壤深度的增加,轴根型紫花地丁和根茎型水麦冬的根长密度RLD、根表面积密度RASD、根面积比RAR逐渐减小,而根蘖型苦荬菜的RLD、RASD、RAR出现了先增大后减小的趋势。3种草本植物根系分布特征参数的量化结果均表现为紫花地丁>水麦冬>苦荬菜。根茎型水麦冬提升土体抗压强度的能力最优,其根土复合体黏聚力增量分别是紫花地丁和苦荬菜黏聚力增量的1.42、2.6倍。3种草本植物破坏面的RLD、RASD和RAR均表现为水麦冬最大,苦荬菜最小,紫花地丁居中。苦荬菜破坏面根系参数与黏聚力增量无相关性。对于轴根型和根茎型草本植物,根土复合体破坏面的3个根系分布参数中,RAR与黏聚力增量的相关性明显高于RLD和RASD。因此,RAR可以作为预测根茎型和轴根型草本植物提高土体抗压强度能力的重要参数。
Abstract
To investigate the impact of herb root type and distribution on the unconfined compressive strength of root-soil composites, the root distribution characteristics of cluster-root Viola philippica, tiller-root Ixeris polycephala, and rhizome-root Triglochin Palustre within different soil depths were determined using an image pixel conversion algorithm. Stress-strain curves of the three herb-root-soil composites were obtained through unconfined compressive tests. The relationship between root parameters and cohesion increment of the failure surface of the root-soil composites was examined by quantifying the compressive strength. Results indicated that within the 0-8 cm soil depth range, the root length density (RLD), root surface area density (RASD), and root area ratio (RAR) of Viola philippica and Triglochin Palustre gradually decreased with increasing soil depth, while Ixeris polycephala displayed an increasing trend followed by a subsequent decrease. Quantitative root distribution parameters of Viola philippica ranks first, followed by Triglochin palustre and Ixeris polycephala in sequence. Rhizome-root Triglochin palustre exhibited the highest ability to improve soil compressive strength, with the cohesion increment of its root-soil composite being 1.42 and 2.6 times those of Viola philippica and Ixeris polycephala, respectively. Triglochin palustre has the largest RLD, RASD and RAR of the failure surface, followed by Viola philippica and Ixeris polycephala in sequence. No correlation was observed between root parameters and cohesion increment of the failure surface of Ixeris polycephala. For cluster-root and rhizome-root herbs, RAR has larger correlation with cohesion increment than RLD and RASD do. Therefore, RAR can serve as an important predictor of soil compressive strength improvement for cluster and rhizome root types.
关键词
根系类型 /
无侧限抗压强度 /
根土复合体 /
根长密度 /
根表面积密度 /
根面积比
Key words
root type /
unconfined compressive strength /
root-soil composite /
root length density /
root surface area density /
root area ratio
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周火明, 于 江, 万 丹, 等. 乌东德库区消落带生态修复植物遴选与配置[J]. 长江科学院院报, 2022, 39(2): 50-55.
[2] 刘向峰, 郝国亮, 张怡斌, 等. 草本植物对排土场边坡稳定性提升效果研究[J]. 中国安全生产科学技术, 2021, 17(9): 103-108.
[3] 段吉鸿, 王 琳, 张学森, 等. 几种适合在红河州生态混凝土中生长的草本植物对重金属的富集[J]. 长江科学院院报, 2016, 33(8): 34-37, 41.
[4] Dr Noboru Karizumi.树木根系图说[M].东京:诚文堂新光社, 1979.
[5] 王立群,陈世璜.草地植物根系类型划分原则的探讨[J].内蒙古农业大学学报(自然科学版),2003,24(3):11-13.
[6] 严小龙. 根系生物学原理与应用[M]. 北京: 科学出版社, 2007: 44-45.
[7] 赵 倩. 不同根系类型组合模式根系生态位及护坡性能研究[D]. 北京: 北京林业大学, 2020.
[8] 傅胤榕. 植物根系抗倾覆性能的模型试验及数值分析研究[D]. 重庆: 重庆大学, 2019.
[9] FENG S, LIU H W, NG C W W. Analytical Analysis of the Mechanical and Hydrological Effects of Vegetation on Shallow Slope Stability[J]. Computers and Geotechnics, 2020, 118: 103335.
[10] BACHE D H, MACASKILL I A. Biotechnical Slope Protection and Erosion Control[J]. Landscape Planning, 1983, 10(1): 77-78.
[11] 栗岳洲, 付江涛, 余冬梅, 等. 寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨[J]. 岩石力学与工程学报, 2015, 34(7): 1370-1383.
[12] 刘小燕, 桂 勇, 罗嗣海, 等. 植物根系固土护坡抗剪强度试验研究[J]. 江西理工大学学报, 2013, 34(3): 32-37.
[13] 左学龙, 肖宏彬, 何 彬, 等. 基于K-G模型的根-土复合体强度特性试验研究[J]. 公路工程, 2017, 42(1): 21-25.
[14] 李为萍, 史海滨, 梁建财, 等. 基于三轴试验的根土复合体抗剪性能试验研究[J]. 灌溉排水学报, 2013, 32(2): 128-130.
[15] 黄 英,符必昌,金克盛,等.加筋红土的广义等效围压和极限平衡条件[J].岩土力学,2007,28(3):533-539.
[16] 聂 影, 陈晓红, 付征耀, 等. 生态护坡根系纤维土强度和变形特性实验研究[J]. 铁道工程学报, 2011, 28(7): 6-8, 63.
[17] 段青松, 赵燚柯, 杨 松, 等. 不同草本植物根系提高无侧限受压土体的抗剪强度[J]. 土壤学报, 2019, 56(3): 650-660.
[18] 孙高峰, 王金霞, 杨 旸, 等. 草本植物根系提高土体无侧限抗压强度及Wu & Waldron模型预测[J]. 江苏农业科学, 2019, 47(14): 263-268.
[19] GB/T 50123—1999,土工试验方法标准[S].北京:中国铁道出版社,2019.
[20] 胡其志, 周 政, 肖本林, 等. 生态护坡中土壤含根量与抗剪强度关系试验研究[J]. 土工基础, 2010, 24(5): 85-87.
[21] 杨永红, 刘淑珍, 王成华, 等. 含根量与土壤抗剪强度增加值关系的试验研究[J]. 水土保持研究, 2007, 14(3): 287-288, 291.
[22] 王元战, 刘旭菲, 张智凯, 等. 含根量对原状与重塑草根加筋土强度影响的试验研究[J]. 岩土工程学报, 2015, 37(8): 1405-1410.
[23] 万海霞, 蔡进军, 郭永忠, 等. 宁夏南部黄土丘陵区典型草本根系分布特征[J]. 水土保持研究, 2020, 27(4): 149-156, 163.
[24] 葛芳红, 周正朝, 刘俊娥, 等. 黄土丘陵区4种典型植物根系分布特征及对土壤分离速率的影响[J]. 水土保持学报, 2017, 31(6): 164-169.
[25] 高英旭.海州露天煤矿排土场复垦区植物根系分布特征研究[J].干旱区资源与环境,2019,33(4):124-128.
[26] 贺长彬, 尤 泳, 王德成, 等. 退化草地复合体力学特性与影响因素研究[J]. 农业机械学报, 2016, 47(4): 79-89.
[27] COMINO E, DRUETTA A. The Effect of Poaceae Roots on the Shear Strength of Soils in the Italian Alpine Environment[J]. Soil and Tillage Research, 2010, 106(2): 194-201.
[28] SU X, ZHOU Z, LIU J E, et al. Estimating Slope Stability by the Root Reinforcement Mechanism of Artemisia Sacrorum on the Loess Plateau of China[J]. Ecological Modelling, 2021, 444: 109473.
[29] TENGBEH G T. The Effect of Grass Roots on Shear Strength Variations with Moisture Content[J]. Soil Technology, 1993, 6(3): 287-295.
[30] BORDONI M, MEISINA C, VERCESI A, et al. Quantifying the Contribution of Grapevine Roots to Soil Mechanical Reinforcement in an Area Susceptible to Shallow Landslides[J]. Soil and Tillage Research, 2016, 163: 195-206.
基金
国家重点研发计划项目(2017YFC1503101)