为研究不同含水率时尾矿砂的基质吸力变化规律,在尾矿砂颗粒级配测试的基础上,根据接触式滤纸法,对某尾矿砂吸湿和脱湿2个阶段分别进行了试验,得到了尾矿砂含水率在9%~40%内的12组基质吸力,建立了尾矿砂吸湿和脱湿过程的土-水特征曲线,并分析了其变化特征。试验结果表明:所测尾矿砂试样属于尾粉质黏土类;采用滤纸法可以获得较大吸力范围内的尾矿砂土-水特征曲线,该曲线近似呈倒“S”形;尾矿砂土-水特征曲线可以分为4个阶段,随含水率的增大,基质吸力阶段性减小;滤纸法测得的尾矿坝基质吸力变化范围较大,吸湿过程中为2 711.095~22.459 kPa,脱湿过程中为28.205~3 607.825 kPa。基质吸力在吸湿和脱湿过程中的变化规律基本一致,但变化路径不同,存在明显的“滞回现象”,脱湿过程中的基质吸力高于吸湿过程。
Abstract
The purpose of this study is to obtain the rule of tailings sand's matric suction varying with different water content. On the basis of particle gradation test of tailings sand, the matric suction in moisture absorption stage and dehumidification stage of tailings sand were tested respectively using contact filter paper method. Twelve groups of matric suction with a water content ranging from 9% to 40% were acquired. The soil-water characteristic curve (SWCC) of tailings sand in moisture absorption and dehumidification stages is established, and the variation characteristic of SWCC is analyzed. Results indicate that the tailings sand belongs to silty clay. The SWCC of tailings sand in a large suction range obtained by filter paper method approximates an inverted “S” shape. The SWCC of tailings sand can be divided into four stages. With the increase of water content, matric suction decreases in stages. The matric suction of tailings dam measured by filter paper method varies in a large range from 2 711.095 kPa to 22.459 kPa in the process of moisture absorption and from 28.205 kPa to 3 607.825 kPa in the process of dehumidification. The variation law of matric suction in the process of moisture absorption and dehumidification is basically the same. However, the change paths are different and obviously hysteretic. The matric suction in dehumidification process is higher than that in moisture absorption process.
关键词
尾矿砂 /
基质吸力 /
滤纸法 /
土-水特征曲线 /
含水率
Key words
tailings sand /
matric suction /
filter paper method /
soil-water characteristic curve /
moisture content
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨校辉,朱彦鹏,郭 楠,等.压实度和基质吸力对土石混合填料强度变形特性的影响研究[J].岩土力学,2017,38(11):3205-3214.
[2] 魏恒志,叶 伟,刘永强,等.极旱后强降雨条件下的黏土坝坡基质吸力变化研究[J].长江科学院院报,2018,35(1):107-111.
[3] 黄志全,岳康兴,李 幻,等.滤纸法测定非饱和膨胀土土水特征曲线试验[J].南水北调与水利科技,2015,13(3):482-486.
[4] 白福青,刘斯宏,袁 骄.滤纸法测定南阳中膨胀土土水特征曲线试验研究[J].岩土工程学报,2011,33(6):928-933.
[5] 陈留凤,彭 华.干湿循环对硬黏土的土水特性影响规律研究[J].岩石力学与工程学报,2016,35(11):2337-2344.
[6] 丁少林,左昌群,刘代国,等.非饱和残积土土-水特性研究及基质吸力估算[J].长江科学院院报,2016,33(3):98-103.
[7] 邵龙潭,覃亚龙,郭晓霞,等.非饱和土有效应力公式验证[J].地下空间与工程学报,2018,14(6):1476-1483.
[8] LIKOS W, LU N. Filter Paper Technique for Measuring Total Soil Suction[J]. Transportation Research Record Journal of the Transportation Research Board, 2002, 1786(1):120-128.
[9] BULUT R, LEONG E C.Indirect Measurement of Suction[J].Geotechnical and Geological Engineering, 2008, 26 (6) :633-644.
[10]SUITS L D, SHEAHAN T C, MARINHO F A M, et al. The Effect of Contact on the Filter Paper Method for Measuring Soil Suction[J]. Geotechnical Testing Journal, 2012, 35(1):103571.
[11]吴珺华,彭东豹,袁俊平,等.滤纸法测定膨胀土总吸力试验及基质吸力预测研究[J].防灾减灾工程学报,2018,38(3):570-574.
[12]陈东霞,龚晓南. 非饱和残积土的土-水特征曲线试验及模拟[J]. 岩土力学, 2014, 35(7): 1885-1891.
[13]唐 栋,李典庆,金浩飞,等. 国产“双圈”牌滤纸吸力率定曲线研究[J]. 武汉大学学报(工学版), 2016, 49(1): 1-8.
[14]王 钊,杨金鑫,况娟娟,等. 滤纸法在现场基质吸力量测中的应用[J]. 岩土工程学报, 2003, 25(4): 405-408.
基金
四川省科技创新苗子工程项目(2017016)