冰水沉积粉质黏土非饱和强度特征与细观机理研究

冯文凯, 白慧林, 孟睿, 李坤, 欧文

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (10) : 82-88.

PDF(5453 KB)
PDF(5453 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (10) : 82-88. DOI: 10.11988/ckyyb.201905405
岩土工程

冰水沉积粉质黏土非饱和强度特征与细观机理研究

  • 冯文凯, 白慧林, 孟睿, 李坤, 欧文
作者信息 +

Unsaturated Strength Characteristics and Mesomechanism of Silty Clay Deposited in Ice Water

  • FENG Wen-kai, BAI Hui-lin, MENG Rui, LI Kun, OU Wen
Author information +
文章历史 +

摘要

为弥补当前对非饱和粉质黏土细观结构研究的欠缺,基于Fredlund双应力变量理论、Fredlund-Xing土-水特征模型,通过室内试验从细观结构、矿物成分至非饱和力学特性方面展开对冰水沉积粉质黏土的系统研究,查明非饱和抗剪强度及参数变化特征,深入分析细观作用机理。研究表明:冰水沉积粉质黏土非饱和抗剪强度随基质吸力增大而提高,增长速率逐渐降低,内摩擦角φ′与含水率构成对数函数关系,内聚力ctotal1具有峰值特征,峰值点含水率约为10.24%。土中的矿物组分遇水发生的水解、离子置换等作用对土体结构造成较大影响,在低基质吸力条件下造成宏观非饱和抗剪强度的损伤,根据其作用特征将非饱和抗剪强度随基质吸力的变化过程划分为3个阶段,建立了适用于冰水沉积粉质黏土的三维破坏包络面的概化模型。与此同时,分析发现材料参数φb在低基质吸力段并不为常数,以某一初始值逐渐减小,变化曲线呈反“S”形,最终无限趋近于0。

Abstract

The mesostructure, mineral composition, and unsaturated mechanic properties of silty clay deposited in ice-water are investigated through laboratory test based on Fredlund’s double-stress variable theory and Fredlund-Xing’s soil-water characteristic model. The characteristics of unsaturated shear strength and parameter change are identified, and the mesomechanism of unsaturated shear strength varying with matric suction is revealed. Results demonstrate that the unsaturated shear strength of silty clay deposited in ice-water increases with the augment of matric suction; but the growth rate attenuates gradually. Internal friction angle φ′ is in a logarithmic function relation with water content; while cohesion ctotal1 is of peak characteristic, with the water content reaching about 10.24% at peak cohesion. Hydrolysis and ion exchange of mineral components in soil encountered with water have great influence on soil structure and result in the damage of macro-unsaturated shear strength under low matric suction. The process of variation of unsaturated shear strength with matric suction is divided into three stages, and meanwhile a generalized three-dimensional failure envelope model of silty clay deposited in ice-water is established. In addition, the material parameter φb is not a constant in the segment of low matric suction, but rather declines gradually from an initial value to be approaching zero infinitely, with the change curve in an inversed “S” shape.

关键词

冰水沉积粉质黏土 / 土-水特征曲线 / 非饱和抗剪强度 / 细观结构 / 矿物成分

Key words

ice-water deposited silty clay / soil-water characteristic curve / unsaturated shear strength / mesostructure / mineral composition

引用本文

导出引用
冯文凯, 白慧林, 孟睿, 李坤, 欧文. 冰水沉积粉质黏土非饱和强度特征与细观机理研究[J]. 长江科学院院报. 2020, 37(10): 82-88 https://doi.org/10.11988/ckyyb.201905405
FENG Wen-kai, BAI Hui-lin, MENG Rui, LI Kun, OU Wen. Unsaturated Strength Characteristics and Mesomechanism of Silty Clay Deposited in Ice Water[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(10): 82-88 https://doi.org/10.11988/ckyyb.201905405
中图分类号: TU42   

参考文献

[1] 曹伯勋.地貌学及第四纪地质学[M]. 北京:中国地质大学出版社,1995.
[2] 黄家华.四川理县桃坪冰水堆积体强度特性研究[D].成都:成都理工大学,2016.
[3] 庞学勇,包维楷,吴 宁. 岷江上游干旱河谷气候特征及成因[J].长江流域资源与环境,2008,17(增刊1):46-53.
[4] 祁 昊,冯文凯,陈建峰,等.降雨作用下欢喜坡冰水堆积体角砾土强度特性[J].水文地质工程地质,2017,44(4):78-84.
[5] 许四法,王志健,胡 琦,等. 重塑非饱和粉质黏土抗剪强度特性试验研究[J].浙江工业大学学报,2015,43(2):227-231.
[6] ESCARIO V. Suction-controlled Penetration and Shear Tests[C]//Proceeding of the 4th International Conference on Expansive Soils. Denver, Colorado, June 16-18, 1980: 781-787.
[7] FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: Wiley, 1993.
[8] 林鸿州,李广信,于玉贞,等.基质吸力对非饱和土抗剪强度的影响[J].岩土力学,2007,28(9): 1931-1936.
[9] 黄 琨,万军伟,陈 刚,等.非饱和土的抗剪强度与含水率关系的试验研究[J].岩土力学,2012,33(9):2600-2604.
[10]孙 红,葛修润,牛富俊,等.上海粉质粘土的三轴CT实时细观试验[J].岩石力学与工程学报,2005,24(24):4559-4564.
[11]LI X, ZHANG L M.Characterization of Dual-structure Pore-size Distribution of Soil.[J]. Canadian Geotechnical Journal, 2009, 46(2):129-141.
[12]李龙起,罗书学,姜 红,等.非饱和红黏土土水特性及强度特征研究[J].西南交通大学学报,2014,49(3):393-398,431.
[13]付宏渊,马吉倩,史振宁,等.非饱和土抗剪强度理论的关键问题与研究进展[J].中国公路学报,2018,31(2):1-14.
[14]戚国庆,黄润秋.土水特征曲线的通用数学模型研究[J].工程地质学报,2004,12(2):182-186.
[15]FREDLUND D G, XING A. Equations for the Soil-Water Characteristic Curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.
[16]LEONG E C, RAHARDJO H. A Review on Soil Water Characteristic Curve Equations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123: 1106-1117.
[17]谭罗荣,张梅英,邵梧敏,等. 灾害性膨胀土的微结构特征及其工程性质[J].岩土工程学报,1994,16(2):48-57.
[18]谭罗荣,孔令伟. 某类红粘土的基本特性与微观结构模型[J].岩土工程学报,2001,23(4):458-462.
[19]黄启迪,蔡国庆,赵成刚. 非饱和土干化过程微观结构演化规律研究[J].岩土力学,2017,38(1):165-173.
[20]FREDLUND D G, MORGENSTERN N R, WIDGER R A. The Shear Strength of Unsaturated Soils[J]. Canadian Geotechnical Journal, 1978, 15: 313- 321.
[21]GAN J K M, FREDLUND D G, RAHARDJO H. Determination of the Shear Strength Parameters of an Unsaturated Soil Using the Direct Shear Test[J]. Canadian Geotechnical Journal, 1988, 25(3): 500-510.

基金

国家自然科学基金项目(41572291);四川省青年科技创新研究团队专项计划项目(2017TD0018);地质灾害防治与地质环境保护国家重点实验室团队项目(SKLGP2016Z001)

PDF(5453 KB)

Accesses

Citation

Detail

段落导航
相关文章

/