水合物的存在和分解对能源土的抗剪强度有双面影响。为了研究水合物对于海洋土抗剪强度的影响,考虑到水合物的存在增大了土颗粒之间的接触面积,引入胶结面积比的概念,采用理论推导的方法,修正了考虑水合物影响的有效应力表达式,并提出能够同时考虑水合物种类以及赋存模式的黏聚力表达式。根据摩尔-库伦准则,得到抗剪强度随着水合物饱和度变化的关系式。此外,考虑甲烷气体的溶解,修正了水合物分解后的孔隙压力表达式。最后,借助于沉积物三轴剪切试验和水合物分解的数值模拟结果来验证公式的合理性。结果表明:所提公式能较好地反映水合物含量、水合物赋存状态、高水压对强度的影响;同时修正孔压模型有助于更好地分析海底斜坡稳定。
Abstract
The existence and decomposition of hydrates have two-sided effects on the shear strength of marine energy soil. To investigate the effect of hydrate on the strength of marine energy soil, an expression of the cohesion of marine energy soil is proposed in consideration of the type and occurrence mode of hydrate. As the presence of hydrates increases the contact area between soil particles, the concept of cemented area ratio is introduced to revise the expression of effective stress on account of the influence of hydrate via theoretical derivation. Based on the Mohr-Coulomb criterion, the relation of shear strength varying with hydrate saturation is obtained. In addition, the expression of pore pressure after hydrate decomposition is deduced considering the dissolution of methane gas. The rationality of the proposed expression is verified through triaxial shear test of sediments and numerical simulation of hydrate decomposition. The results conclude that the present expression well reflects the impacts of hydrate content, hydrate occurrence state, and high water-pressure on the strength of marine energy soil; meanwhile, the corrected pore pressure model is helpful to better analyze the stability of submarine slope.
关键词
深海能源土 /
水合物 /
有效应力 /
黏聚力 /
抗剪强度 /
超孔隙压力
Key words
deep sea energy soil /
hydrate /
effective stress /
cohesion /
shear strength /
excess pore pressure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CUCCOVILLO T, COOP M R. Yielding and Pre-failure Deformation of Structured Sands [J]. Geotechnique, 1997, 47(3): 491-508.
[2] WAITE W F,SANTAMARINA J C,CORTES D D,et al. Physical Properties of Hydrate-Bearing Sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003.
[3] 颜荣涛,梁维云,韦昌富,等. 考虑赋存模式影响的含水合物沉积物的本构模型研究[J]. 岩土力学,2017,38(1):10-18.
[4] 李栋梁,王 哲,吴 起,等. 天然气水合物储层力学特性研究进展[J]. 新能源进展,2019,7(1): 40-49.
[5] HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and Dissociation Properties of Methane Hydrate-bearing Sand in Deep Seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
[6] 蒋明镜,张 宁,金树楼. 不同胶结宽度粒间胶结特性试验研究[J]. 岩土力学,2015,36(4): 928-936.
[7] 蒋明镜,贺 洁,周雅萍. 考虑水合物胶结厚度的深海能源土粒间胶结模型研究[J]. 岩土力学,2014,35(5): 1231-1240.
[8] 杨周洁,周家作,陈 强,等. 含水合物泥质粉细砂三轴试验及本构模型[J].长江科学院院报,2020,37(12):139-145.
[9] 颜荣涛,赵续月,杨德欢,等.天然气水合物沉积物的强度模型[J]. 桂林理工大学学报,2016,36(3):514-520.
[10] 张旭辉,鲁晓兵,王淑云,等.四氢呋喃水合物沉积物静动力学性质试验研究[J].岩土力学,2011,32(增刊1): 303-308.
[11] 宋海斌. 天然气水合物体系动态演化研究(Ⅱ):海底滑坡[J].地球物理学进展,2003(3): 503-511.
[12] XU W, GERMANOVICH L N. Excess Pore Pressure Resulting from Methane Hydrate Dissociation in Marine Sediments: A Theoretical Approach[J]. Journal of Geophyscal Research: Solid Earth, 2006, 111(B1), doi: 10.1029/2004JB003600.
[13] GROZIC J L H, KVALSTAD T J. Effect of Gas on Deepwater Marine Sediments[C]//Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering. Netherlands: A. A. Balkema Publishers, 2001: 2289-2294.
[14] 洪隽天,徐 明. 不排水条件下可燃冰分解对海底边坡稳定性的影响[J].天津大学学报(自然科学与工程技术版),2019,52(增刊1): 49-55.
[15] 路德春,杜修力,许成顺. 有效应力原理解析[J]. 岩土工程学报,2013,35(增刊1):146-151.
[16] 董 林,廖华林,李彦龙,等.天然气水合物沉积物力学性质测试与评价[J].海洋地质前沿,2020,36(9):34-43.
[17] 张旭辉,王淑云,李清平,等.天然气水合物沉积物力学性质的试验研究[J].岩土力学,2010,31(10):3069-3074.
[18] 刘乐乐,张旭辉,刘昌岭,等.含水合物沉积物三轴剪切试验与损伤统计分析[J].力学学报,2016,48(3):720-729.
[19] 杨期君,赵春风. 水合物沉积物力学性质的三维离散元分析[J]. 岩土力学,2014,35(1): 255-262.
[20] 颜荣涛,韦昌富,魏厚振,等. 水合物形成对含水合物砂土强度影响[J].岩土工程学报,2012,34(7):1234-1240.
[21] DUAN Z, MAO S. A Thermodynamic Model for Calculating Methane Solubility, Density and Gas Phase Composition of Methane-bearing Aqueous Fluids from 273 to 523 K and from 1 to 2000 Bar[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3369-3386.
[22] SLOAN E D. Clathrate Hydrate of Natural Gases[M]. Edition 2. New York: CRC Press, 1998.
基金
国家自然科学基金项目(51774018);长江学者和创新团队发展计划项目(IRT_17R06)