怒江真核浮游生物的海拔分布格局及其环境影响因素

黄杰, 邓玥, 李天翠, 胡明明, 刘威, 王雨春, 王英才, 胡愈炘

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (4) : 59-65.

PDF(2097 KB)
PDF(2097 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (4) : 59-65. DOI: 10.11988/ckyyb.20211320
水环境与水生态

怒江真核浮游生物的海拔分布格局及其环境影响因素

  • 黄杰1, 邓玥2, 李天翠1, 胡明明3, 刘威1, 王雨春3, 王英才1, 胡愈炘1
作者信息 +

Altitude Distribution and Environmental Impact of Eukaryotic Plankton in the Nujiang River Basin

  • HUANG Jie1, DENG Yue2, LI Tian-cui1, HU Ming-ming3, LIU Wei1, WANG Yu-chun3, WANG Ying-cai1, HU Yu-xin1
Author information +
文章历史 +

摘要

为研究怒江真核浮游生物群落的多样性,于2020年11月在怒江干流约2 000 km的区域布设了35个样点进行样品采集,基于18S rRNA分子标记进行宏条形码分析,探究了真核浮游生物群落的空间分布差异及其对环境因子的响应。测序共得到1 320个操作分类单元(OTU),涵盖了真核浮游生物群落共34门302属。β多样性显示怒江的真核浮游生物群落能够随海拔梯度的变化明显分为高海拔(4 000 m以上)、中海拔(1 000~4 000 m)和低海拔(1 000 m以下)3个分组,组间差异大于组内差异。不同海拔真核浮游生物的α多样性显示,表征物种丰富度的Chao1指数、表征群落均匀度的Pielou指数、表征群落整体多样性的Shannon-Wiener指数和Simpson指数均随着海拔的升高呈降低趋势,说明海拔的升高会影响真核浮游生物的多样性。在不同海拔的群落组成差异上,纤毛虫门和绿藻门的物种相对丰度随着海拔的降低而升高,主要富集于低海拔区域;硅藻门物种是相对丰度最高的物种,主要富集于中海拔区域;节肢动物门的物种相对丰度随着海拔的降低而降低,主要富集于高海拔区域。环境影响因素上,怒江pH值和电导率随纬度的降低而降低,水温、溶解氧、流速和浊度随纬度的降低而升高,海拔、水温和流速是显著影响怒江真核浮游生物群落分布的环境因子。

Abstract

To explore the diversity of eukaryotic plankton in Nujiang River, water samples were collected from 35 locations in November 2020. The sampling area covers over 1 000 kilometers of Nujiang River. Metabarcoding technology was used to study the spatial distribution of eukaryotic plankton and its response to environmental factors based on 18S rRNA gene. Overall, 1 320 OTUs (Operational Taxonomic Unit) were obtained from the samples. The eukaryotic plankton species detected in these samples cover 34 phyla and 302 genera. According to β diversity, the eukaryotic community can be divided into three groups, namely, high altitude (above 4 000 m), middle altitude (between 1 000 m and 4 000 m), and low altitude (below 1000 m), and the difference among the groups is larger than that within the groups. The Shannon-Wiener index and Simpson index which refelct the diversity of the community, Pielou's evenness index which indicates the evenness of community, and Chao1 index which characterize the abundance of community, all decrease as altitude increases, meaning a higher altitude will affect the diversity of eukaryotic plankton. To analyze the community composition, we compared the relative abundance of different species at phylum level. The result show that Ciliophora and Chlorophyta are enriched in low altitude area, rising with the decline of altitude; Bacillariophyta, the most abundant species, are enriched in middle altitude area; Arthropoda are enriched in high altitude area, reducing with the decling of altitude. For the environmental impact, the result showed pH value and conductivity decrease as altitude decreases. Water temperature, DO (Dissolved Oxygen), FV (Flow Velocity) and Turb (Turbidity) decrease as altitude increases. Altitude, water temperature and flow velocity are the key environmental factors for the distribution of eukaryotic community in Nujiang River Basin.

关键词

真核浮游生物 / 18S rRNA / 海拔梯度 / 环境因子 / 怒江

Key words

eukaryotic plankton / 18s rRNA / altitude gradient / environmental factors / Nujiang River

引用本文

导出引用
黄杰, 邓玥, 李天翠, 胡明明, 刘威, 王雨春, 王英才, 胡愈炘. 怒江真核浮游生物的海拔分布格局及其环境影响因素[J]. 长江科学院院报. 2023, 40(4): 59-65 https://doi.org/10.11988/ckyyb.20211320
HUANG Jie, DENG Yue, LI Tian-cui, HU Ming-ming, LIU Wei, WANG Yu-chun, WANG Ying-cai, HU Yu-xin. Altitude Distribution and Environmental Impact of Eukaryotic Plankton in the Nujiang River Basin[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(4): 59-65 https://doi.org/10.11988/ckyyb.20211320
中图分类号: Q89   

参考文献

[1] 丹 勇, 赵 萍, 胡子龙, 等. 水库建设对河流沉积物磷形态分布的影响: 以澜沧江、怒江为例. 三峡大学学报(自然科学版), 2020, 42(4): 1-7.
[2] 符建荣, 孙治宇, 刘少英, 等. 怒江水电开发的生态影响与保护对策. 四川林业科技, 2012, 33(2): 101-103.
[3] 周建国, 李新旺, 胡金明, 等. 怒江流域云南段生物多样性保护地人为干扰分析. 热带地理, 2018, 38(4): 465-474.
[4] 褚一凡, 赵闪闪, 李杲光, 等. 陈桥东湖浮游生物群落结构特征及水质评价. 长江科学院院报, 2019, 36(8): 23-29.
[5] 朱晓声, 郭小娟, 王耀耀, 等. 梯级水库建设对怒江与澜沧江沉积物氮形态分布的影响. 中国环境科学, 2019, 39(7): 2990-2998.
[6] 叶玉适, 陈 进, 许继军, 等. 长江源和怒江源区水体氮磷化学计量特征初探. 长江科学院院报, 2019, 36(9): 6-11, 22.
[7] 刘明典, 马 波, 张 驰, 等. 西藏河流裂腹鱼类分布格局及环境影响因素: 以怒江和雅鲁藏布江为例. 生态环境学报, 2020, 29(9): 1792-1800.
[8] 李 钊,朱峰跃,刘明典,等.怒江上游裸腹叶须鱼的年龄结构与生长特性.淡水渔业,2019,49(4):42-49.
[9] 王 起, 刘明典, 朱峰跃, 等. 怒江上游三种裂腹鱼类摄食及消化器官比较研究. 动物学杂志, 2019, 54(2): 207-221.
[10] 李 斌, 徐丹丹, 刘绍平, 等. 怒江西藏段大型底栖动物群落结构及多样性研究. 淡水渔业, 2015, 45(2): 43-48.
[11] 李 斌, 岳兴建, 耿相昌, 等. 怒江云南段大型底栖无脊椎动物群落结构与水质生物评价. 四川动物, 2013, 32(1): 23-28.
[12] 李 斌, 张耀光, 王志坚. 怒江(云南段)大型底栖动物纵向分布和季节性变化规律研究. 西南师范大学学报(自然科学版), 2011, 36(3): 138-143.
[13] 李 斌, 张耀光, 岳兴建, 等. 怒江流域大型底栖动物资源状况. 淡水渔业, 2011, 41(3): 3-9.
[14] 郝 盟, 张家波, 魏 秘, 等. 易贡藏布江春季浮游生物群落结构特征初步研究. 水生态学杂志, 2020, 41(6): 57-64.
[15] 张军燕, 高 志, 沈红保, 等. 拉萨河春季浮游生物群落结构特征研究. 淡水渔业, 2017, 47(4): 23-28, 62.
[16] 张建禄, 边 坤, 许涛清, 等. 西藏帕隆藏布秋季浮游生物群落结构特征. 基因组学与应用生物学, 2016, 35(3): 647-655.
[17] 马宝珊, 杨学峰, 谢从新, 等. 雅鲁藏布江谢通门江段浮游生物资源现状及其季节动态. 水生态学杂志, 2015, 36(6): 19-28.
[18] 葛玉双,程起群.环境DNA及其在水生生物多样性调查中的应用. 渔业信息与战略,2020,35(1):55-62.
[19] 胡愈炘, 彭 玉, 李瑞雯, 等. 基于环境DNA宏条形码的丹江口水库浮游生物多样性及群落特征. 湖泊科学, 2021, 33(6): 1650-1659.
[20] STOECK T,BASS D,NEBEL M,et al. Multiple Marker Parallel Tag Environmental DNA Sequencing Reveals a Highly Complex Eukaryotic Community in Marine Anoxic Water. Molecular Ecology,2010,19(Suppl.1):21-31.
[21] MARTIN M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet Journal, 2011, 17(1): 10.
[22] EDGAR R C. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics, 2010, 26(19): 2460-2461.
[23] BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nature Biotechnology, 2019, 37(8): 852-857.
[24] OKSANEN J, KINDT R, LEGENDRE P, et al. The Vegan Package. Community Ecology, 2007, 10: 631-637.
[25] 许 晴, 张 放, 许中旗, 等. Simpson指数和Shannon-Wiener指数若干特征的分析及“稀释效应”. 草业科学, 2011, 28(4): 527-531.
[26] CAUSEY B D. Parametric Estimation of the Number of Classes in a Population. Journal of Applied Statistics, 2002, 29(6): 925-934.
[27] PIELOU E C. The Measurement of Diversity in Different Types of Biological Collections. Journal of Theoretical Biology, 1966, 13: 131-144.
[28] HAN X,PAN B,ZHAO G,et al. Local and Geographical Factors Jointly Drive Elevational Patterns of Phytoplankton in the Source Region of the Yangtze River, China. River Research and Applications,2021,37(8):1145-1155.
[29] 江 源,彭秋志,廖剑宇,等. 浮游藻类与河流生境关系研究进展与展望. 资源科学,2013,35(3):461-472.
[30] 马宝珊, 魏开金, 徐 进, 等. 雅砻江下游及其主要支流安宁河着生藻类多样性与空间分布. 中国水产科学, 2021, 28(12): 1602-1611.
[31] 普 布, 袁文军. 西藏双湖地区土壤纤毛虫群落特征. 高原科学研究, 2019, 3(4): 12-20.
[32] 李慧明. 中国镖水蚤科(桡足类:哲水蚤目)种类多样性、系统发育及生物地理学研究. 广州: 暨南大学, 2017.
[33] KLAVENESS D, LINDSTRM E-A. Hydrurus Foetidus (Chromista, Chrysophyceae): a Large Freshwater Chromophyte Alga in Laboratory Culture. Phycological Research, 2011, 59(2): 105-112.
[34] ELLIOTT J A, JONES I D, THACKERAY S J. Testing the Sensitivity of Phytoplankton Communities to Changes in Water Temperature and Nutrient Load, in a Temperate Lake. Hydrobiologia, 2006, 559(1): 401-411.
[35] 梁培瑜, 王 烜, 马芳冰. 水动力条件对水体富营养化的影响. 湖泊科学, 2013, 25(4): 455-462.
[36] 胡 俊, 胡 鑫, 米玮洁, 等. 多沙河流夏季浮游植物群落结构变化及水环境因子影响分析. 生态环境学报, 2016, 25(12): 1974-1982.
[37] 杨 潇, 马吉顺, 张 欢, 等. 鄱阳湖不同水文期浮游生物群落结构特征和影响因素及水质评价. 水生生物学报, 2021, 45(5): 1093-1103.
[38] 高 冲, 杨肖娥, 向律成, 等. pH和温度对薏苡植物床去除富营养化水中氮磷的影响. 农业环境科学学报, 2008, 27(4): 1495-1500.
[39] WEHR J D, SHEATH R G, KOCIOLEK J P. Freshwater Algae of North America: Ecology and Classification. 2nd Edition. New York: Academic Press, 2015.

基金

云南省重点研发计划项目(2019BC002);华能集团总部科技项目(HNKJ18-H23)

PDF(2097 KB)

Accesses

Citation

Detail

段落导航
相关文章

/