目前关于澜沧江浮游生物的研究多局限于浮游植物,缺乏从整个真核生物群落的角度进行探讨的研究。为填补相关方面的研究空白,于2020年10月在澜沧江近2 000 km的区域布设了36个样点进行样品采集,基于18S rRNA宏条形码技术探究了真核浮游生物群落的空间分布差异及其对环境因子的响应。测序共得到1 269个OTU,涵盖了45门284属,测序深度足够反映物种多样性。NMDS和ANOSIM分析显示澜沧江真核浮游生物群落依据地理空间分布可划分为3个分组:上游的自然河道段、中游的乌弄龙电站和功果桥电站之间区域、下游的功果桥电站以下区域。根据多样性及群落组成数据发现:属于自然河道段的上游群落组成最为均匀,金藻门和硅藻门广泛分布于该区域;属于水库段的中游和下游多样性类似且均低于上游,隐藻门广泛分布于该区域。影响澜沧江真核浮游生物群落结构变化的环境因子主要为水温和碱度。上、中、下游的环境驱动因子有所不同,电导率是影响上游真核浮游生物群落结构的关键环境因子,水温是影响中游的关键环境因子,而下游则主要受总磷的影响。
Abstract
Current research on plankton in the Lancang River is mostly limited to phytoplankton;discussion from the perspective of the whole eukaryotic community is in lack.To fill the blank in the research area,the eukaryotic plankton diversity and its response to environmental factors were explored by using 18S rRNA metabarcoding technology based on water samples collected from 36 locations covering an area of nearly 2 000 kilometers of Lancang River in October 2020.Overall,1 269 OTUs were obtained from the samples;the eukaryotic plankton species detected in these samples cover 45 phyla and 284 genera,reflecting the majority of the diversity.Based on NMDS and ANOSIM analysis,the eukaryotic community can be divided into three spatial groups:the natural channel in the upstream area,the midstream area between Wunonglong hydropower station and Gongguoqiao hydropower station,and the downstream area of Gongguoqiao hydropower station.According to the diversity and community composition data,the upstream area sees the most evenly distributed eukaryotic community,with Chrysophyte and Bacillariophyta broadly distributed;the midstream and the downstream features similar diversity,both lower than that in the upstream,with Cryptophyta most broadly distributed.Water temperature and alkalinity are dominant environmental factors that affect the structural change of eukaryotic plankton community in the Lancang River.Driving factors vary among the upstream,midstream,and downstream:electrical conductivity is the key environmental factor affecting the community structure of eukaryotic plankton in the upstream area,while water temperature in the midstream,and total phosphorus concentration in the downstream.
关键词
澜沧江 /
真核浮游生物 /
18S rRNA /
空间分布 /
环境因子
Key words
Lancang River /
eukaryotic plankton /
18S rRNA /
spatial distribution /
environmental factors
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李晨阳.澜沧江-湄公河合作:机遇、挑战与对策[J].学术探索,2016,194(1):22-27.
[2] 黄汉文,李昌文,徐 驰.澜沧江-湄公河水资源合作的现实、挑战与方向[J].人民长江,2021,52(7):88-94.
[3] 刘丛强,汪福顺,王雨春,等.河流筑坝拦截的水环境响应:来自地球化学的视角[J].长江流域资源与环境,2009,18(4):384-396.
[4] 吴嘉伟,彭 梦,李罗新,等.澜沧江小湾库区浮游植物初级生产力评估及其时空变化[J].淡水渔业,2021,51(4):3-11.
[5] 程 豹,望 雪,徐雅倩,等.澜沧江流域浮游细菌群落结构特征及驱动因子分析[J].环境科学,2018,39(8):3649-3659.
[6] 褚一凡,赵闪闪,李杲光等.陈桥东湖浮游生物群落结构特征及水质评价[J].长江科学院院报,2019,36(8):23-29.
[7] 韩 谞,潘保柱,赵耿楠,等.长江源区浮游植物群落结构及分布特征[J].长江流域资源与环境,2019,28(11):2621-2631.
[8] 龚森森,吴嘉伟,柴 毅,等.长湖浮游动物群落结构特征及其季节变化[J].水产科学,2021,40(3):329-338.
[9] 孙胜浩,陈 娟,王沛芳,等.澜沧江硅藻的地理分布模式与关键驱动因素[J].环境科学,2020,41(12):5458-5469.
[10]朱海涛,湛若云,彭 玉,等.澜沧江源区浮游植物群落特征及其对水质的指示作用[J].水生态学杂志,2020,41(1):16-21.
[11]殷大聪,许继军,金 燕,等.长江源与澜沧江源区浮游植物组成与分布特性研究[J].长江科学院院报,2017,34(1):61-66.
[12]葛玉双,程起群.环境DNA及其在水生生物多样性调查中的应用[J].渔业信息与战略,2020,35(1):55-62.
[13]STOECK T,BASS D,NEBEL M,et al.Multiple Marker Parallel Tag Environmental DNA Sequencing Reveals a Highly Complex Eukaryotic Community in Marine Anoxic Water[J].Molecular Ecology,2010,19(S1):21-31.
[14]MARTIN M.Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads[J].EMBnet Journal,2011,17(1):10.
[15]EDGAR R C.Search and Clustering Orders of Magnitude Faster Than BLAST[J].Bioinformatics,2010,26(19):2460-2461.
[16]BOLYEN E,RIDEOUT J R,DILLON M R,et al.Reproducible,Interactive,Scalable and Extensible Microbiome Data Science Using QIIME 2[J].Nature Biotechnology,2019,37(8):852-857.
[17]OKSANEN J,KINDT R,LEGENDRE P,et al.The Vegan Package[J].Community Ecology,2007,10:631-637.
[18]姚宇秀,陈 媛,郭佩佩,等.Illumina MiSeq高通量测序技术研究原料乳及环境中细菌多样性和致病菌的分布情况[J].中国食品学报,2019,19(1):249-254.
[19]龚森森,吴嘉伟,柴 毅,等.长湖浮游动物群落结构特征及其季节变化[J].水产科学,2021,40(3):329-338.
[20]PIELOU E C J.The Measurement of Diversity in Different Types of Biological Collections[J].Journal of Theoretical Biology,1966(13):131-144.
[21]CHAO A.Non-Parametric Estimation of the Number of Classes in A Population[J].Scandinavian Journal of Statistics,1984(11):265-270.
[22]ZHANG J,ZHANG B,LIU Y,et al.Distinct Large-Scale Biogeographic Patterns of Fungal Communities in Bulk Soil and Soybean Rhizosphere in China[J].Science of the Total Environment,2018,644:791-800.
[23]HU Y,LIU X,XING W,et al.Marker Gene Analysis Reveals the Spatial and Seasonal Variations in the Eukaryotic Phytoplankton Community Composition in the Yangtze River,Three Gorges Reservoir,China[J].Journal of Plankton Research,2019,41(6):835-848.
[24]谢树莲,冯 佳.中国淡水金藻门植物研究进展[J].世界科技研究与发展,2007,29(6):1-6.
[25]李 静,戴 曦,孙 颖,等.太湖浮游纤毛虫群落结构及其与环境因子的关系[J].生态学报,2014,34(16):4672-4681.
[26]吕鹏飞,李晓东,王顺贵,等.不同碱度下高pH对蒙古裸腹溞存活、生长及生殖的影响[J].水产科学,2009,28(10):567-571.
[27]张爱芳,黄江峰,章海鑫,等.黄颡鱼夏花培育池水质及浮游生物数量和类型的变化[J].水产学杂志,2021,34(2):71-75.
基金
云南省重点研发计划项目(2019BC002);华能集团总部科技项目(HNKJ18-H23)