单剪与常规三轴条件下土石混合体强度特性差异

李浩民, 饶锡保, 江洎洧, 徐晗, 卢一为, 刘蔚

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (3) : 105-111.

PDF(1487 KB)
PDF(1487 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (3) : 105-111. DOI: 10.11988/ckyyb.20211199
岩土工程

单剪与常规三轴条件下土石混合体强度特性差异

  • 李浩民, 饶锡保, 江洎洧, 徐晗, 卢一为, 刘蔚
作者信息 +

Differences in Strength Properties of Soil-Rock Mixture under Simple Shear and Triaxial Compression

  • LI Hao-min, RAO Xi-bao, JIANG Ji-wei, XU Han, LU Yi-wei, LIU Wei
Author information +
文章历史 +

摘要

开展土石混合体的大型叠环式单剪试验与大型三轴试验,根据颗粒材料及砂土的单剪试验规律分析单剪试样应力状态,探讨两种试验条件下土石混合体的强度特性差异。结果表明:①对应相同小主应力,试样在单剪过程中的大主应力率水平更低、变化范围更小,主应力比峰值更低,对应极限应力摩尔圆更小;②单剪条件下的割线剪切模量各向异性,其中水平向割线剪切模量在剪切过程中恒低于三轴条件下的割线剪切模量,但差值随主应力轴与主应变轴间的非共轴度减小而减小;③对于采用试料,单剪条件下的摩尔-库仑抗剪强度指标值显著低于三轴条件下的值,其中内摩擦角低约9.5%。初步研究认为,单剪过程中的主应力轴旋转以及非共轴性是造成土石混合体2种试验强度特性差异的重要原因。

Abstract

Large-scale laminar-ring simple shear test and large-scale triaxial test of soil-rock mixture(SRM) were carried out. The stress state of samples in simple shear was analyzed according to the joint test law of granular material and sand in simple shear. The differences in the strength properties of SRM under simple shear and triaxial compression were then explored. Results reveal that: (i) With the same minimum principal stress, the rate of maximum principal stress in simple shear is lower and changes in a smaller range, and the peak value of principal stress ratio is lower, which means the ultimate Mohr's circle of stress is smaller. (ii) The secant shear modulus under simple shear is anisotropic, and the secant shear modulus in horizontal direction is constantly lower than that under triaxial compression, but such difference shortens with the decrease of non-coaxiality degree between principal stress axes and principal strain axes. (iii) For the samples used, the shear strength indices of Mohr-Coulomb strength criterion obtained under simple shear are significantly lower than those under triaxial compression, and in particular, the internal friction angle is about 9.5% lower. Preliminary investigation shows that the rotation of principal stress axes and non-coaxiality in simple shear are important reasons for the differences of strength properties of SRM.

关键词

土石混合体 / 强度特性 / 大型单剪试验 / 大型三轴试验 / 主应力轴旋转 / 非共轴

Key words

soil-rock mixture / strength properties / large-scale simple shear test / large-scale triaxial test / rotation of principal stress axes / non-coaxiality

引用本文

导出引用
李浩民, 饶锡保, 江洎洧, 徐晗, 卢一为, 刘蔚. 单剪与常规三轴条件下土石混合体强度特性差异[J]. 长江科学院院报. 2023, 40(3): 105-111 https://doi.org/10.11988/ckyyb.20211199
LI Hao-min, RAO Xi-bao, JIANG Ji-wei, XU Han, LU Yi-wei, LIU Wei. Differences in Strength Properties of Soil-Rock Mixture under Simple Shear and Triaxial Compression[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(3): 105-111 https://doi.org/10.11988/ckyyb.20211199
中图分类号: TU411   

参考文献

[1] 徐文杰, 胡瑞林. 土石混合体概念、分类及意义[J]. 水文地质工程地质, 2009, 36(4): 50-56.
[2] 田湖南, 焦玉勇, 王 浩, 等. 土石混合体力学特性的颗粒离散元双轴试验模拟研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3564-3573.
[3] 江洎洧, 程展林, 潘家军, 等. 基于大型叠环剪切试验的松散土石体强度及变形特性试验研究[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3636-3643.
[4] 王艳丽, 程展林, 潘家军, 等. 岩土工程三轴试验微摩擦荷载传力板的研制及初步应用[J]. 岩土工程学报, 2020, 42(12): 2316-2321.
[5] 于玉贞, 张向韬, 王 远, 等. 堆石料真三轴条件下力学特性试验研究进展[J].工程力学, 2020, 37(4): 1-21,29.
[6] 褚福永, 朱俊高, 王 平, 等. K0固结条件下粗粒土变形及强度特性研究[J]. 岩土力学, 2012, 33(6): 1625-1630.
[7] 江洎洧, 潘家军, 程展林, 等. 基于大型真三轴试验的粗粒料强度特性研究[J]. 岩土工程学报, 2018, 40(增刊2): 32-36.
[8] 潘家军, 程展林, 余 挺, 等. 不同中主应力条件下粗粒土应力变形特性试验研究[J]. 岩土工程学报, 2016, 38(11): 2078-2084.
[9] 施维成, 朱俊高, 张 博, 等. 粗粒土在平面应变条件下的强度特性研究[J]. 岩土工程学报, 2011, 33(12): 1974-1979.
[10] FRYDMAN S, TALESNICK M. Simple Shear of Isotropic Elasto-Plastic Soil[J]. International Journal for Numerical and Analytical Method in Geomechanics, 1991, 15(4): 251-270.
[11] 杜子博, 钱建固, 黄茂松. 考虑主应力轴旋转效应的交通荷载下饱和软黏土变形特性试验研究[J]. 岩石力学与工程学报, 2016, 35(5): 1031-1040.
[12] 蔡燕燕, 俞 缙, 余海岁, 等. 考虑主应力轴旋转的砂土变形特性试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 417-424.
[13] 黄茂松,孙海忠,钱建固.粗粒土的非共轴性及其离散元数值模拟[J].水利学报,2010,41(2):173-181.
[14] 冯大阔, 张建民. 粗粒土与结构接触面静动力学特性的大型单剪试验研究[J].岩土工程学报, 2012, 34(7):1201-1208.
[15] 王艳丽, 饶锡保, 潘家军,等. 砂砾石垫层料与混凝土面板接触面特性的大型单剪试验研究[J].岩土工程学报, 2019, 41(8):1538-1544.
[16] GB/T 50145—2007,土的工程分类[S]. 北京:中国计划出版社,2008.
[17] BUDHU M. Nonuniformities Imposed by Simple Shear Apparatus[J]. Canadian Geotechnical Journal, 1984, 22(1):125-137.
[18] MATTHIEU G. The Boundary Conditions in Direct Simple Shear Tests: Developments for Peat Testing at Low Normal Stress[D]. Delft: Delft University of Technology, 2011.
[19] WROTH C P. The Behaviour of Normally Consolidated Clay as Observed in Undrained Direct Shear Tests[J]. Geotechnique, 1987, 37(1): 37-43.
[20] ODA M, KONISHI J. Rotation of Principal Stresses in Granular Material During Simple Shear[J]. Soils and Foundations, 1974, 14(4): 39-53.
[21] ODA M. On the Relation in the Simple Shear Test[J]. Soils and Foundations, 1975, 15(4): 35-41.
[22] WOOD D M,DRESCHER A,BUDHU M. On the Determination of the Stress State in the Simple Shear Apparatus[J]. ASTM Geotechnical Testing Journal, 1979, 2(4):211-222.
[23] YAO Li,YANG Yun-ming,YU Hai-sui,et al. Principal Stress Rotation under Bidirectional Simple Shear Loadings[J]. KSCE Journal of Civil Engineering, 2018, 22(5):1651-1660.
[24] 田 雨, 姚仰平, 罗 汀. 从各向异性的角度解释和模拟土的非共轴特性[J]. 岩土力学, 2018, 39(6):2035-2042.

基金

国家自然科学基金项目(51979009;52008032);中央级科研院所基本科研业务费项目(CKSF2019191/YT)

PDF(1487 KB)

Accesses

Citation

Detail

段落导航
相关文章

/