第四纪浅表堆沉积土石混合体广泛分布于地表,从结构特征研究其力学特性是解决日益复杂的岩土工程问题的有效途径之一。目前,土石混合体结构的量化主要从密度、含石量、孔隙比等宏观指标间接描述,而微细观的结构指标存在尺度间关联的技术瓶颈。为了更好地研究土石体堆沉积结构对土石混合体力学行为的影响,针对堆沉积演化的成层状特征,采用标准差量化其块石分布形式,借鉴综合结构势理论,将均匀与不均匀土石混合体三轴剪切试验偏应力的比值定义为结构参量ms,分析该参量随轴向应变ε1、不均匀度s及围压σ3c的变化规律,得到其量化表达式,并引入双屈服面弹塑性本构模型进行修正应用。结果表明:ms的变化规律能够较好地体现成层状结构特征对土石混合体力学行为的影响,且土石混合体综合结构势在应变为5%时接近完全释放,特征值ms(5%)几乎能完全反映结构对力学特性的宏观影响;同时,引入ms后的修正本构模型在偏应力精度方面减小了约28%的平均误差,能够更合理地反映成层状土石混合体的宏观力学特性。
Abstract
Shallow quaternary deposited and sedimentary soil-rock mixtures (SRMs) are widely distributed on the earth. One of the most effective approaches to solve the increasingly complex geotechnical problems is to study the mechanical properties of SRMs from their structural characteristics. At present, the quantification of the structure of SRMs is mainly and indirectly described by macroscopic indicators, such as density, stone content, and void ratio; while the multiscale correlation between microscopic and mesoscopic structural indexes is still a technical bottleneck. To better understand the influence of the structure on the mechanical behavior of SRMs, the layered distribution form of rock blocks created in the deposited and sedimentary evolution was quantified via the standard variance based on the idea of comprehensive structural potential. The structural parameter (ms) was defined as the ratio of the deviator stress of uniform SRMs to that of non-uniform SRMs. The variations of ms with the axial strain (ε1), the non-uniformity (s) and the confining pressure (σ3c) were examined, and the quantitative expression of ms was obtained and incorporated into an elastic-plastic constitutive model with double yield surfaces. The results show that the variation of ms well reflects the influence of the layered structural characteristics on the mechanical behavior of SRMs. The comprehensive structural potential of SRMs is released almost completely as the axial strain reaches 5%, and the feature value (i.e., ms (5%)) reflects the macroscopic influence of structural characteristics on the mechanical behavior of SRMs. Meanwhile, the modified constitutive model with ms improves the accuracy of the deviator stress by about 28%. It proves that the modified constitutive model can reasonably reflect the macroscopic mechanical properties of layered SRMs.
关键词
土石混合体 /
成层状 /
块石结构特征 /
结构参量 /
修正本构模型
Key words
soil-rock mixture /
layered /
structural characteristics of rock blocks /
structural parameter /
modified constitutive model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 油新华, 李 晓, 何 刚. 土石混合体的随机结构模型及其生成技术研究[C]//全国岩土与工程学术大会论文集. 北京:人民交通出版社,2003:468-469.
[2] SASS O, KRAUTBLATTER M. Debris Flow-dominated and Rockfall-dominanted Talus Slopes: Genetic Models Derived from GPR Measurements[J]. Geomorphology, 2007, 86(1/2):176-192.
[3] PASCAL B, JEAN-PIERRE T. Facies and Microfacies of Slope Deposits[J]. Catena, 1999, 35(2/3/4): 99-121.
[4] COLI N, BERRY P, BOLDINI D, et al. The Contribution of Geostatistics to the Characterization of Some Bimrock Properties[J]. Engineering Geology, 2012, 137/138: 53-63.
[5] 油新华. 土石混合体的随机结构模型及其应用研究[J]. 岩石力学与工程学报,2002,21(11):173.
[6] LI X, LIAO Q L, HE J M. In-situ Tests and a Stochastic Structural Model of Rock and Soil Aggregate in the Three Gorges Reservoir Area, China[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(3):702-707.
[7] 严 颖, 赵金凤, 季顺迎. 块石含量和空间分布对土石混合体抗剪强度影响的离散元分析[J]. 工程力学,2017,34(6):157-167.
[8] 邵 帅, 季顺迎. 块石空间分布对土石混合体边坡稳定性的影响[J]. 工程力学,2014,31(2):177-183.
[9] 胡 伟, 闵 弘, 陈 健,等. 碎石对土石体无侧限力学特性影响研究[J]. 长江科学院院报,2015,32(11):55-61.
[10]李 晓,郝建明,廖秋林,等. 土石混合体结构及力学特征[M]. 北京:科学出版社,2017.
[11]谢定义, 齐吉琳. 土结构性及其定量化参数研究的新途径[J]. 岩土工程学报,1999,21(6):651-656.
[12]DONG H, HUANG R, GAO Q F. Rainfall Infiltration Performance and Its Relation to Mesoscopic Structural Properties of a Gravelly Soil Slope[J]. Engineering geology, 2017, 230: 1-10.
[13]孙海忠, 黄茂松. 考虑粗粒土应变软化特性和剪胀性的本构模型[J]. 同济大学学报(自然科学版),2009,37(6):727-732.
[14]INDRARATNA B, IONESCU D, CHRISTIE H D. Shear Behavior of Railway Ballast Based on Large-Scale Triaxial Tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5):439-449.
[15]秦红玉, 刘汉龙, 高玉峰,等. 粗粒料强度和变形的大型三轴试验研究[J]. 岩土力学,2004,25(10):1575-1580.
基金
国家自然科学基金项目(51108397);湖南创新型省份建设专项(2019RS1059);湖南省教育厅项目基金(19A477,18C0090)