广义位势理论本构模型的开发和验证

钟志辉, 杨光华, 张玉成, 温勇, 官大庶

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (7) : 87-92.

PDF(4806 KB)
PDF(4806 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (7) : 87-92. DOI: 10.11988/ckyyb.20210151
岩土工程

广义位势理论本构模型的开发和验证

  • 钟志辉1, 杨光华2, 张玉成3, 温勇4, 官大庶5,6
作者信息 +

Development and Verification of Constitutive Models of Generalized Potential Theory

  • ZHONG Zhi-hui1, YANG Guang-hua2, ZHANG Yu-cheng3, WEN Yong4, GUAN Da-shu5,6
Author information +
文章历史 +

摘要

广义位势理论从数学原理出发,将主空间的应力应变关系转换成六维空间的应力应变关系,从而建立岩土材料的本构模型,具有明确的数学依据和更少的物理假设。然而,将广义位势理论的本构模型开发到大型数值分析软件,并在六维应力应变空间中进行数值计算和验证的工作尚不多。为此,介绍了广义位势理论的多重势面模型和二重势面模型,详细分析了2种模型用于数值计算的弹塑性矩阵,并以2个二重势面模型(不考虑剪胀性的类剑桥模型和考虑剪胀性的类剑桥模型)为例,在数值分析软件FLAC3D中实现2个模型的开发。将开发的本构模型在FLAC3D的六维应力应变空间中进行计算分析,通过对比数值计算结果和室内三轴试验成果,说明了广义位势理论的本构模型在六维应力应变空间的计算精度是较高的,从而验证了理论模型的科学性和开发软件的正确性。

Abstract

In line with the mathematical principle, the generalized potential theory transforms the stress-strain relationship in the main space into stress-strain relationship in six-dimensional stress-strain space, thus establishing the constitutive model of rock and soil materials which has clear mathematical basis and fewer physical assumptions. However, few researches have been conducted to apply the constitutive model of generalized potential theory to large-scale numerical analysis software, let alone the numerical calculation and verification in the six-dimensional stress-strain space. In view of this, the multiple potential surface model and the double potential surface model of the generalized potential theory are introduced, and the elasto-plastic matrices of the two models used in numerical calculation are analyzed in detail. Two double potential surface models (the Similar Cam-clay model without dilatancy and the Similar Cam-clay model with dilatancy) are taken as examples to develop the model in numerical analysis software FLAC3D. The developed constitutive models are calculated and analyzed in the six-dimensional stress-strain space of FLAC3D. Comparison of the results of numerical calculation with the results of laboratory triaxial tests reveals high computational accuracy of the constitutive model of generalized potential theory in the six-dimensional stress-strain space, thus verifying the scientific nature of the theoretical model and the correctness of the development software.

关键词

广义位势理论 / 本构模型 / 模型开发 / 类剑桥模型 / 六维应力应变空间

Key words

generalized potential theory / constitutive model / model development / Similar Cam-clay model / six-dimensional stress-strain space

引用本文

导出引用
钟志辉, 杨光华, 张玉成, 温勇, 官大庶. 广义位势理论本构模型的开发和验证[J]. 长江科学院院报. 2022, 39(7): 87-92 https://doi.org/10.11988/ckyyb.20210151
ZHONG Zhi-hui, YANG Guang-hua, ZHANG Yu-cheng, WEN Yong, GUAN Da-shu. Development and Verification of Constitutive Models of Generalized Potential Theory[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(7): 87-92 https://doi.org/10.11988/ckyyb.20210151
中图分类号: TB125    TU43   

参考文献

[1] 杨光华. 21世纪应建立岩土材料的本构理论[J]. 岩土工程学报, 1997, 19(3): 116-117.
[2] 郑颖人. 岩土塑性力学的新进展:广义塑性力学[J]. 岩土工程学报,2003, 25(1): 1-10.
[3] 杨光华. 岩土类工程材料的多重势面弹塑性本构模型理论[J]. 岩土工程学报,1991,13(5):99-107.
[4] 杨光华. 土的本构模型的数学理论及其应用[D]. 北京:清华大学,1998.
[5] 杨光华,介玉新,李广信,等. 土的多重势面模型及其验证[J]. 岩土工程学报,1999,21(5):578-582.
[6] 杨光华,李广信. 岩土本构模型的数学基础与广义位势理论[J]. 岩土力学,2002,23(5):531-535.
[7] 刘元雪,郑颖人. 含主应力轴旋转的广义塑性位势理论[J]. 力学季刊,2000,21(1):129-133.
[8] 周爱兆,卢廷浩. 基于广义位势理论的接触面弹塑性本构模型[J]. 岩土工程学报,2008,30(10):1532-1536.
[9] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. 岩土力学,2010,31(增刊1):38-42.
[10] 姚 捷. 基于广义位势理论的土的本构模型的研究[D]. 武汉:武汉大学,2010.
[11] 杨光华,姚 捷,温 勇. 考虑拟弹性塑性变形的土体弹塑性本构模型[J]. 岩土工程学报,2013,35(8):1496-1503.
[12] 杨光华,温 勇,钟志辉. 基于广义位势理论的类剑桥模型[J]. 岩土力学,2013,34(6):1521-1528.
[13] WEN Yong, YANG Guang-hua, ZHONG Zhi-hui, et al. A Similar Cam-Clay Model for Sand Based on the Generalized Potential Theory[C] //Proceedings of the 2nd IACGE International Conference on Geotechnical and Earthquake Engineering. Chengdu, China. October 25-27, 2013.
[14] 杨光华. 广东水科院岩土专业发展与我国岩土工程技术的若干进步[J]. 广东水利水电, 2018 (11): 1-10.
[15] 钟志辉,杨光华,傅旭东,等. 基于广义位势理论的本构模型的数值试验验证[J]. 岩石力学与工程学报,2014, 33(增刊2): 3515-3522.[16] ZHONG Zhi-hui, YANG Guang-hua, FU Xu-dong, et al. Numerical Verification of the Similar Cam-Clay Model Based on the Generalized Potential Theory[J]. Journal of Central South University of Technology, 2014, 21(12): 4707-4713.
[17] 陆有忠,杨有贞,郑璐石. 浅析传统塑性位势理论与广义塑性位势理论[J]. 岩土力学,2003,24(增刊2):207-211.
[18] 杨光华. 土的现代本构理论的发展回顾与展望[J]. 岩土工程学报,2018,40(8):1363-1372.
[19] 陈育民,刘汉龙. 邓肯-张本构模型在FLAC3D中的开发与实现[J]. 岩土力学,2007,28(10):2123-2126.
[20] 盛佳韧. 上海黏土力学特性综合试验研究及本构模拟[D]. 上海: 上海交通大学, 2012.
[21] 姚仰平,侯 伟,罗 汀. 土的统一硬化模型[J]. 岩石力学与工程学报,2009,28(10):2135-2151.
[22] NAKAI T. An Isotropic Hardening Elastoplastic Model for Sand Considering the Stress Path Dependency in Three-dimensional Stresses[J]. Soils and Foundations, 1989, 29(1): 119-137.

基金

国家自然科学基金项目(51778152);广东省基础与应用基础研究基金项目(2020A1515110215);2021年度广东水利电力职业技术学院教育教学改革研究与实践项目(GX0205JGXM003)

PDF(4806 KB)

Accesses

Citation

Detail

段落导航
相关文章

/