为研究混凝土在海水侵蚀、荷载及水力渗透复杂条件下的蠕变特性,对不同浸泡时间条件下的港口混凝土进行三轴分级加载蠕变试验。试验结果表明:①海水侵蚀对港口混凝土强度具有明显的弱化效应,浸泡时间为0,30,60,120 d下混凝土的长期强度分别为12.8,11.5,10.6,10.2 MPa;②随着海水浸泡时间的增加,混凝土试件的初始渗透率逐渐增加,浸泡时间为0,30,60,120 d下混凝土初始渗透率分别为8.15×10-17, 1.12×10-16, 1.49×10-16, 1.60×10-16 m2,海水的腐蚀效果逐渐降低,初始渗透率与腐蚀时间之间呈负指数关系;③改进的西原模型非线性蠕变本构方程与试验数据拟合效果理想,决定系数分别达到0.98,0.96,0.95,0.92,能较好地反映港口混凝土在应力-渗流-化学多场耦合作用下蠕变变形的阶段性特征与时效特征。研究结果可为我国港口工程的长期运行提供指导性参考。
Abstract
In order to study the creep characteristics of concrete under the complex conditions of seawater corrosion, load and hydraulic seepage, we conducted triaxial staged-loading creep test on port concrete immersed in seawater for different days. Test results demonstrate that: 1) seawater corrosion has a significant weakening effect on the strength of port concrete. The long-term strengths of concrete immersed for 0,30,60,120 days are 12.8 MPa, 11.5 MPa, 10.6 MPa, and 10.2 MPa, respectively. 2) As the time of immersion elongates, the initial permeability of concrete increases gradually. The initial permeability of concrete immersed for 0,30,60,120 days are 8.15×10-17 m2, 1.12×10-16 m2, 1.49×10-16 m2, and 1.60×10-16m2, respectively. However, the corrosion effect of seawater attenuates gradually, and the initial permeability is negatively correlated with the corrosion time. 3) The non-linear creep constitutive equation of improved Nishihara model has an ideal fitting effect with the test data, and the determination coefficients are up to 0.98, 0.96, 0.95, and 0.92, respectively, well reflecting the stage characteristics and aging characteristics of creep deformation of port concrete under the coupled action of stress, seepage and corrosion. The research results can provide guidance for the long-term operation of port project in China.
关键词
混凝土蠕变 /
多场耦合 /
蠕变试验 /
渗透率 /
本构模型 /
龙口港工程
Key words
creep of concrete /
multi-field coupling /
creep test /
permeability rate /
constitutive model /
Longkou port project
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 章 强,何 凯,王学锋.基于大数据分析的港口绩效评价研究[J].重庆交通大学学报(自然科学版),2019,38(5):66-73.
[2] 骞 轲.港口工程桩基施工技术及质量控制要点分析[J].工程技术研究,2018(11):200-201.
[3] 孟 琪,刘传孝,李 想,等.不同含水率混凝土的分级加载蠕变试验研究[J].矿业研究与开发,2018,38(4):61-65.
[4] 周庆华,沙爱民.高模量沥青混凝土蠕变特性研究[J].郑州大学报(工学版),2012,33(4):23-27.
[5] HE Zhi-hai, ZHAN Pei-min, DU Shi-gui, et al. Creep Behavior of Concrete Containing Glass Powder[J]. Composites Part B: Engineering, 2019, 166: 13-20.
[6] 万伊琳,顾嘉丽.分析港口施工中的水泥混凝土裂缝原因[J].黑龙江交通科技,2018,41(12):263-264.
[7] 王 健. 秦皇岛港103#泊位损坏结构安全性评估及加固的研究[D]. 秦皇岛:燕山大学,2017.
[8] 覃 潇,申爱琴,郭寅川,等.多场耦合下路面混凝土细观裂缝的演化规律[J].华南理工大学学报(自然科学版),2017,45(6):81-88,102.
[9] 王 丹,刘子键,郑晓宁,等.海水干湿循环下疲劳损伤钢筋混凝土梁氯离子扩散试验研究[J].建筑结构学报,2015,36(增刊2):250-256.
[10]郑 俊,王世梅,周 辉,等.基于伯格模型的非饱和土蠕变模型构建[J].长江科学院院报,2019,36(8):112-118,124.
[11]OTTOSEN N S. Viscoelastic-viscoplastic Formulas for Analysis of Cavities in Rock Salt[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1986, 23(3): 201-212.
[12]蒋昱州,王 奔,王瑞红,等.基于应变屈服临界的岩石黏弹塑性蠕变模型研究[J].长江科学院院报,2017,34(11):89-95.
[13]高春艳,高全臣,牛建广.考虑加速蠕变的深井巷道粉
砂岩非线性黏弹塑性蠕变模型研究[J].长江科学院院报,2016,33(12):99-104.
[14]郭少华.混凝土蠕变损伤分析模型[J].西安建筑科技大学学报,1995(3):299-303.
[15]李永奇.沥青混凝土低温直接拉伸蠕变研究[J].公路交通科技,1991(1):1-8.
[16]陈宗基,康文法,黄杰藩.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991(4):299-312.
[17]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982(1):1-20.
[18]GHANE E, FAUSEY N R, BROWN L C. Non-Darcy Flow of Water Through Woodchip Media[J]. Journal of Hydrology, 2014, 519(D): 3400-3409.
[19]刘开云,薛永涛,周 辉.基于改进Bingham模型的软岩参数非定常三维非线性黏弹塑性蠕变本构研究[J].岩土力学,2018,39(11):4157-4164.
[20]刘春阳,王 坚,王 彬,等.基于中位参数法相关观测的抗差加权整体最小二乘算法[J].武汉大学学报(信息科学版),2019,44(3):378-384.