有别于平面滑动与圆弧滑动,具有复合底滑界面的滑坡体在滑移过程中,滑体各部位滑移方向因必须适应底滑界面的倾角而各不相同。滑体经过底滑界面转折部位时其滑移方向会产生突变,这种突变诱导滑体内部产生剪切破裂面,滑体内部的抗剪阻力则阻碍这种剪切破裂面的形成,从而有利于滑体的整体稳定。针对前缓后陡的复合滑动边坡,提出了考虑滑体内部剪切破裂面的三滑面刚体极限平衡分析方法,从而反映滑体内部抗剪阻力对边坡稳定的约束机制。以Vajont滑坡为例进行了详尽的案例分析,结果表明,复合滑坡体存在客观的内部剪切约束机制,三滑面刚体极限平衡分析可以充分反映这种机制,该方法可为具有复合底滑界面的边坡稳定性分析提供新的思路和方法。
Abstract
Different from plane sliding and circular sliding, the sliding direction of landslide with composite bottom sliding interface varies because the sliding direction must adapt to the dip angle of the bottom sliding interface. When the sliding mass passes through the turning part of the bottom sliding interface, the sliding direction changes abruptly. Such abrupt change induces the shear fracture surface in the sliding mass; but the shear resistance in the sliding mass hinders the formation of such shear fracture surface, which is beneficial to the overall stability of the sliding mass. For composite sliding slope with gentle front and steep back, a rigid body limit equilibrium analysis method with three sliding planes considering the internal shear fracture surface of sliding mass is proposed to reflect the constraint mechanism of internal shear resistance on slope stability. A detailed case analysis on Vajont landslide is presented. Results reveal an objective internal shear constraint mechanism in the composite landslide as reflected by the rigid body limit equilibrium analysis of three sliding surfaces.
关键词
边坡稳定性 /
复合底滑界面 /
滑体内部剪切破裂 /
三滑面 /
刚体极限平衡
Key words
slope stability /
composite bottom sliding interface /
internal shear fracture of sliding mass /
three slip surfaces /
rigid body limit equilibrium
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MÜLLER-SALZBURG L. The Rock Slide in the Vajont Valley[M]. Berlin: Springer-Verlag, 1964.
[2] PARONUZZI P, BOLLA A. The Prehistoric Vajont Rockslide: An Updated geological Model[J]. Geomorphology, 2012, 169/170: 165-191.
[3] SEMENZA E, GHIROTTI M. History of the 1963 Vaiont slide: The Importance of Geological Factors[J]. Bulletin of Engineering Geology and the Environment, 2000, 59(2): 87-97.
[4] PARONUZZI P, BOLLA A. The Influence of the Geological Model in the Stress-Strain Analysis of the 1963 Vajont Landslide[C]//Workshop on World Landslide Forum. Doi: 10.1007/978-3-319-53485-5_61.
[5] IBANEZ J P, HATZOR Y H. Rapid Sliding and Friction Degradation: Lessons from the Catastrophic Vajont Landslide[J]. Engineering Geology, 2018, 244: 96-106.
[6] ZANIBONI F, TINTI S. The 1963 Vajont Landslide: A Numerical Investigation on the Sliding Surface Heterogeneity[J]. Pure and Applied Geophysics, 2019, 176(1): 279-295.
[7] HAVAEJ M, WOLTER A, STEAD D. The Possible Role of Brittle Rock Fracture in the 1963 Vajont Slide, Italy[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 319-330.
[8] PETLEY D N, PETLEY D J.On the Initiation of Large Rockslides: Perspectives from a New Analysis of the Vaiont Movement Record[C]. Doi: 10.1007/978-1-4020-4037-5_3.
[9] MÜLLER-SALZBURG L. The Vajontcatastrophe—A personal Review[J]. Engineering Geology, 1987, 24(1/2/3/4): 423-444.
[10] TIKA TH E, HUTCHINSON J N. Ring Shear Tests on Soil from the Vaiont Landslide Slip Surface[J]. Géotechnique, 1999, 49(1): 59-74.
[11] HENDRON A J, PATTON F D. The Vajont Slide — A Geotechnical Analysis Based on New Geologic Observations of the Failure Surface[J]. Engineering Geology, 1987, 24(1/2/3/4): 475-491.
[12] 张迎宾,董 琰,陈岩岩,等.滑体强度衰减对Vajont滑坡运动影响的DDA模拟[J/OL]. 西南交通大学学报,Doi: 10.3969/j.issn.0258-2724.20190913.
[13] CROSTA G B, IMPOSIMATO S, RODDEMAN D. Interaction of Landslide Mass and Water Resulting in Impulse Waves[C]. Doi:10.1007/978-3-642-31427-8_6.
[14] SADREKARIMI A, OLSON S M. Review of the October 9, 1963 Failure of the Vaiont Reservoir Slope[C]. Geo-denver, doi: 10.1061/40901(220)10.
[15] 钟立勋.意大利瓦依昂水库滑坡事件的启示[J]. 中国地质灾害与防治学报,1994(2):77-84.
[16] MENCL V. Mechanics of Landslides with Non-circular Slip Surfaces with Special Reference to the Vajont Slide[J]. Géotechnique, 1966, 16(4): 329-337.
[17] YERRO A,PINYOL N M,ALONSO E E.Internal Progressive Failure in Deep-seated Landslides[J]. Rock Mechanics and Rock Engineering,2016,49(6):2317-2332.
[18] ALONSO E E, PINYOL N M, PUZRIN A M. Catastrophic Slide: Vajont Landslide, Italy[M]. Netherlands: Springer, 2010.
[19] FERRI F, TORO G D, HIROSE T,et al. Low-to high-velocity Frictional Properties of the Clay-rich Gouges from the Slipping Zone of the 1963 Vaiont Slide, Northern Italy[J]. Journal of Geophysical Research Solid Earth, 2011, 116: B09208.
[20] SUPERCHIL. The Vajont Rockslide: New Techniques and Traditional Methods to Re-evaluate the Catastrophic Event[D]. Italy: Padova University, 2012.
[21] BOON C W, HOULSBY G T, UTILI S. New Insights into the 1963 Vajont Slide Using 2D and 3D Distinct-Element Method Analyses[J]. Geotechnique, 2014, 64(10): 800-816.
[22] PARONUZZI P, RIGO E, BOLLA A. Influence of Filling-drawdown Cycles of the Vajont Reservoir on Mt. Toc Slope Stability[J]. Geomorphology, 2013: 191: 75-93.
[23] 邬爱清,丁秀丽,卢 波,等.DDA方法块体稳定性验证及其在岩质边坡稳定性分析中的应用[J]. 岩石力学与工程学报,2008,27(4):664-672.
[24] XU Dong-dong, WU Ai-qing, YANG Yong-tao, et al. A New Contact Potential Based Three-dimensional Discontinuous Deformation Analysis Method[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104206.
基金
国家重点研发计划项目(2018YFC0407002);国家自然科学基金项目(51927815,51879014,12072047);中央级公益性科研院所基本科研业务费项目(CKSF2019434)