基于GRACE卫星数据的汉江流域旱情反演及影响因素定量分析

韩昊宇, 丁文峰, 许文涛, 康靖羚

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (11) : 44-51.

PDF(2172 KB)
PDF(2172 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (11) : 44-51. DOI: 10.11988/ckyyb.20200730
水土保持与生态修复

基于GRACE卫星数据的汉江流域旱情反演及影响因素定量分析

  • 韩昊宇1,2, 丁文峰1,2, 许文涛1,2, 康靖羚1,2
作者信息 +

Inversion of Drought Events and Quantitative Analysis of Influencing Factors in Hanjiang River Basin Based on GRACE Satellite Data

  • HAN Hao-yu1,2, DING Wen-feng1,2, XU Wen-tao1,2, KANG Jing-ling1,2
Author information +
文章历史 +

摘要

气候变化和人类活动对汉江流域旱情有重要影响。利用卫星时变重力场反演地面水储量可以弥补传统流域水储量监测的缺陷。以GRACE卫星数据为基础,采用水储量亏损方法建立模型反演汉江流域2004—2014年间干旱事件,结合多源卫星数据和居民用水量数据,定量分析了气候变化和人类活动对汉江流域干旱事件的影响。结果表明,汉江流域2006、2007、2011、2013年分别发生了干旱事件,降雨、蒸发、人类活动(水库蓄水和居民用水量)等变量与陆地水储量变化显著相关,气候变化对4场干旱事件发生的贡献率分别为0.41、0.43、0.36、0.36,人类活动对4场干旱事件发生的贡献率分别为0.59、0.57、0.65、0.64,贡献度的趋势表明人类活动对汉江流域干旱事件的影响在不断增强。

Abstract

Climate change and human activities have considerable influences on the drought events in Hanjiang River basin. The inversion of terrestrial water storage by using remote sensing technologies can make up the drawbacks of traditional observation techniques. The drought events in Hanjiang River Basin from 2004 to 2014 are identifıed by water storage defıcits based on GRACE(Gravity Recovery and Climate Experiment) satellite data, and the impact of drought events on the water balance change is quantitatively analyzed by using multi-satellite data and water use data. Results demonstrate that drought events occurred in Hanjiang River Basin in 2006, 2007, 2011 and 2013. Rainfall, evaporation, and human activity (reservoir operation and water withdrawals) were significantly correlated with terrestrial water storage changes at annual scale. The rates of contribution of climate change to drought events were 0.41, 0.43, 0.36 and 0.36, respectively, while the rates of contribution of human activities to the drought events were 0.59, 0.57, 0.65 and 0.64, respectively. The trends of contribution rate implies an increasing influence of human activities on drought events in the Hanjiang River Basin.

关键词

GRACE / 水储量亏损 / 干旱 / 气候变化 / 人类活动 / 汉江流域

Key words

GRACE / water storage defıcits / drought / climate change / human activities / Hanjiang River Basin

引用本文

导出引用
韩昊宇, 丁文峰, 许文涛, 康靖羚. 基于GRACE卫星数据的汉江流域旱情反演及影响因素定量分析[J]. 长江科学院院报. 2021, 38(11): 44-51 https://doi.org/10.11988/ckyyb.20200730
HAN Hao-yu, DING Wen-feng, XU Wen-tao, KANG Jing-ling. Inversion of Drought Events and Quantitative Analysis of Influencing Factors in Hanjiang River Basin Based on GRACE Satellite Data[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(11): 44-51 https://doi.org/10.11988/ckyyb.20200730
中图分类号: X43   

参考文献

[1] MISHRA A K, SINGH V P. A Review of Drought Concepts[J]. Journal of Hydrology, 2010, 391(1): 202-216.
[2] DAI Ai-guo. Drought under Global Warming: A Review[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2(1): 45-65.
[3] RAMILLIEN G, FAMIGLIETTI J S, WAHR J. Detection of Continental Hydrology and Glaciology Signals from GRACE: A Review[J]. Surveys in Geophysics, 2009, 29(4): 361-374.
[4] XAVIER L, BECKER M, CAZENAVE A, et al. Interannual Variability in Water Storage over 2003-2008 in the Amazon Basin from GRACE Space Gravimetry, In situ River Level snd Precipitation Data[J]. Remote Sensing of Environment, 2010, 114(8): 1629-1637.
[5] YIRDAW S Z, SNELGROVE K R, AGBOMA C O, et al. GRACE Satellite Observations of Terrestrial Moisture Changes for Drought Characterization in the Canadian Prairie[J]. Journal of Hydrology, 2008, 356(1): 84-92.
[6] STRASSBERG G, SCANLON B R, CHAMBERS D. Evaluation of Groundwater Storage Monitoring with the GRACE Satellite: Case Study of the High Plains Aquifer, Central United States[J]. Water Resources Research, 2009, 45(5), doi:10.1029/2008WR006892.
[7] THOMAS A C, REAGER J T, FAMIGLIETTI J S, et al. GRACE-based Water Storage Defıcit Approach for Hydrological Drought Characterization[J]. Geophysical Research Letters, 2014, 41(5): 1537-1545.
[8] YU Mei-xiu, LIU Xiao-long, LI Qiong-fang. Impacts of the Three Gorges Reservoir on Its Immediate Downstream Hydrological Drought Regime During 1950-2016[J]. Natural Hazards, 2019, 96(1): 413-430.
[9] WANG Xian-wei, DE LINAGE C, FAMIGLIETTI J S, et al. Gravity Recovery and Climate Experiment (GRACE) Detection of Water Storage Changes in the Three Gorges Reservoir of China and Comparison with In situ Measurements[J]. Water Resources Research, 2011, 47(12), doi :10.1029/2011WR010534.
[10]YI Shuang, SONG Chun-qiao, WANG Qiu-yu, et al. The Potential of GRACE Gravimetry to Detect the Heavy Rainfall-induced Impoundment of a Small Reservoir in the Upper Yellow River[J]. Water Resources Research, 2017, 53(8): 6562-6578.
[11]CHAO Neng-fang, CHEN Gang, LOU Zhi-cai, et al. Detecting Water Diversion Fingerprints in the Danjiangkou Reservoir from Satellite Gravimetry and Altimetry Data[J]. Sensors, 2019, 19(16), doi:10.3390/s19163510.
[12]WANG Jian-hua, JIANG Dong, HUANG Yao-huan, et al. Drought Analysis of the Haihe River Basin Based on GRACE Terrestrial Water Storage[J]. The Scientific World Journal, 2014: 578372, doi :10.1155/2014/578372.
[13]VAN LOON A F, GLEESON T, CLARK J, et al. Drought in the Anthropocene.[J]. Nature Geoscience, 2016, 9(2): 89-91.
[14]BACHMAIR S, STAHL K, COLLINS K, et al. Drought Indicators Revisited: The Need for a Wider Consideration of Environment and Society[J]. Wiley Interdisciplinary Reviews: Water, 2016, 3(4): 516-536.
[15]QIN Zhen-xiong, TAO Peng, VIJAY P S, et al. Spatio-temporal Variations of Precipitation Extremes in Hanjiang River Basin, China, During 1960–2015[J]. Theoretical and Applied Climatology, 2019, 138(3): 1767-1783.
[16]陶新娥,陈 华,许崇育. 基于SPI/SPEI指数的汉江流域1961—2014年干旱变化特征分析[J]. 水资源研究, 2015, 4(5): 404-415.
[17]余江游,夏 军,佘敦先,等. 南水北调中线工程水源区与海河受水区干旱遭遇研究[J]. 南水北调与水利科技, 2018, 16(1): 63-68.
[18]CHEN Hua, GUO Sheng-lian, XU Chong-yu, et al. Historical Temporal Trends of Hydro-climatic Variables and Runoff Response to Climate Variability and Their Relevance in Water Resource Management in the Hanjiang Basin[J]. Journal of Hydrology, 2007, 344(3): 171-184.
[19]LONG Di, YANG Yu-ting, YOSHIHIDE W, et al. Deriving Scaling Factors Using a Global Hydrological Model to Restore Grace Total Water Storage Changes for China's Yangtze River Basin[J]. Remote Sensing of Environment, 2015, 168: 177-193.
[20]王 文,王 鹏,崔 巍. 长江流域陆地水储量与多源水文数据对比分析[J]. 水科学进展, 2015, 26(6): 759-768.
[21]沈 艳,冯明农,张洪政,等. 我国逐日降水量格点化方法[J]. 应用气象学报, 2010, 21(3): 279-286.
[22]CHEN Xu-hui, JIANG Jin-bao, LI Hui. Drought and Flood Monitoring of the Liao River Basin in Northeast China Using Extended GRACE Data[J]. Remote Sensing, 2018, 10(8), doi:10.3390/rs10081168.
[23]SUN Zhang-li, ZHU Xiu-fang, PAN Yao-zhong, et al. Drought Evaluation Using the GRACE Terrestrial Water Storage Deficit over the Yangtze River Basin, China[J]. Science of the Total Environment, 2018, 634: 727-738.
[24]HUANG Ying, SALAMA M S, KROL M S, et al. Estimation of Human-induced Changes in Terrestrial Water Storage through Integration of GRACE Satellite Detection and Hydrological Modeling: A Case Study of the Yangtze River Basin[J]. Water Resources Research, 2015, 51(10): 8494-8516.
[25]XIE Jing-kai, XU Yue-ping, WANG Yi-tong, et al. Influences of Climatic Variability and Human Activities on Terrestrial Water Storage Variations across the Yellow River Basin in the Recent Decade[J]. Journal of Hydrology, 2019, 579, doi:10.1016/j.jhydrol.2019.124218Re.
[26]王 松,田 巍,刘小莽,等. 不同蒸散发产品在汉江流域的比较研究[J]. 南水北调与水利科技, 2018, 3(6): 1-9.
[27]ZHANG Dan, LIU Xiao-mang, BAI Peng. Assessment of Hydrological Drought and Its Recovery Time for Eight Tributaries of the Yangtze River (China) Based on Downscaled GRACE data[J]. Journal of Hydrology, 2018, 568: 592-603.
[28]SYED T H, FAMIGLIETTI J S, RODELL M, et al. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS[J]. Water Resources Research, 2008, 44(2), doi:10.1029/2006WR005779.
[29]SUN Wen-chao, JIN Yong-liang,YU Jing-shan, et al. Integrating Satellite Observations and Human Water Use Data to Estimate Changes in Key Components of Terrestrial Water Storage in a Semi-arid Region of North China[J]. Science of the Total Environment, 2020, 698, doi:10.1016/j.scitotenv.2019.13417100.
[30]LIU Hai, ZHENG Liang, YIN Shou-jing. Multi-perspective Analysis of Vegetation Cover Changes and Driving Factors of Long Time Series Based on Climate and Terrain Data in Hanjiang River Basin, China[J]. Arabian Journal of Geosciences, 2018, 11(17): 1-16.
[31]李 曈,王 文,蔡晓军. 2013年长江中下游夏季高温干旱演变过程及环流异常成因简析[J]. 气象科学, 2017, 37(4): 505-513.
[32]JIANG Wei-xia, WANG Lun-che, FENG Lan, et al. Drought Characteristics and Its Impact on Changes in Surface Vegetation from 1981 to 2015 in the Yangtze River Basin, China[J]. International Journal of Climatology, 2020, 40(7): 3380-3397.
[33]班 璇,朱碧莹,舒 鹏,等. 汉江流域气象水文变化趋势及驱动力分析[J]. 长江流域资源与环境, 2018, 27(12): 2817-2829.

基金

中央级公益性科研院所基本科研业务费项目(CKSF2019185/TB);国家重点研发计划项目(2019YFC1510705-05)

PDF(2172 KB)

Accesses

Citation

Detail

段落导航
相关文章

/