为获得超长联络通道冻结过程对盾构隧道及周边地层的影响,以福州地铁2号线紫阳站—五里亭站区间冻结联络通道为工程背景,采用ANSYS有限元软件对长65.8 m的超长联络通道、盾构隧道及周边土层在双侧冻结过程中的温度场及位移场进行分析。结果表明:在积极冻结期前21 d,冻结管交叉区域的冻结壁扩散平均速率快,达到57 mm/d,后29 d平均速率只有27.6 mm/d;积极冻结期喇叭口附近区域存在宽10 m、高2.5 m的变形集中区,对地面产生变形影响最大;冻结对盾构隧道拱肩水平位移和拱脚竖向变形具有显著的影响,积极冻结期结束,拱肩的水平位移比盾构隧道右侧墙大85%,拱脚竖向位移比拱顶大45%。同时,结构变形及变形增长速率随冻结时间增加而增加。因此,建议应合理控制积极冻结时间及冻结方式,以确保建(构)筑物的安全。
Abstract
To probe into the influence of super long connecting passage on shield tunnel and surrounding strata in active freezing process, we examined the temperature field and displacement field of the 65.8 meters long cross passage, the shield tunnel and surrounding soil layer by using ANSYS with the frozen connecting channel between Ziyang station and Wuliting station of Fuzhou Metro Line 2 as engineering background. Results suggest that in the first 21 days of the active freezing, the average rate of frozen wall diffusion at the cross section of freezing pipe amounted to 57 mm/d, while in the last 29 days the average rate was only 27.6 mm/d; in the active freezing period, we observed a deformation concentration area of 10 meters in width and 2.5 meters in height near the bell mouth, which had a greatest impact on ground deformation. Freezing had a significant impact on the horizontal displacement of the arch shoulder and the vertical deformation of the arch foot. In the end of the active freezing period, the horizontal displacement of the arch shoulder was 85% larger than that of the right wall of the shield tunnel, and the vertical displacement of the arch foot was 45% larger than that of the arch crown. In addition, the structural deformation value and deformation growth rate both increased with the elongation of freezing time. Therefore, we suggested controlling the active freezing time and method reasonably to ensure the safety of buildings (structures).
关键词
盾构隧道 /
超长联络通道 /
数值计算 /
位移场 /
冻结温度场
Key words
shield tunnel /
extra-long contact aisle /
numerical calculation /
displacement field /
freezing temperature field
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴贤国,王洪涛,张凯南,等. 地铁联络通道冻结加固对既有线冻胀控制[J]. 土木工程与管理学报,2018,35(5):1-5.
[2] 孙冠东,焦华喆,陈新明,等. 人工冻结在岩土工程中的应用现状及发展[J]. 煤炭技术,2019,38(6):7-10.
[3] 王延波,徐林有,苏长毅.经典解析法在地铁联络通道冻结法加固效果评价中的应用[J]. 施工技术,2018,47(13):83-88.
[4] 庄全贵. 超深埋强透水地层地铁冻结法联络通道工程实践[J]. 福建建设科技,2019,1(3):34-37.
[5] 苏文德. 冻结工法在富集海水地层下地铁联络通道施工中的应用研究[J]. 水利与建筑工程学报,2019,17(3):181-186.
[6] 赵 堃. 特殊地层条件下冻结壁压力变化规律研究[J]. 煤,2019,28(9):6-8.
[7] 陈军浩,陈飞敏. 冻结孔偏斜对白垩系地层冻结凿井影响研究[J]. 中国煤炭,2013,39(2):41-46.
[8] 李栋伟,周 艳,靳鹏伟,等.深部高承压水地层裂隙岩体冻结温度场实测研究[J]. 冰川冻土,2016,38(1):140-144.
[9] 汪崇鲜,楼根达,马玉峰. 繁华市区含水地层水平冻结及暗挖法施工[J]. 冰川冻土,2000,22(3):278-281.
[10]王 晖,李大勇,李 健,等. 地铁联络通道冻结法施工三维数值模拟分析[J]. 地下空间与工程学报,2011,7(增刊2):1589-1593.
[11]奚守仲,张学亮. 地铁联络通道冻结区域力学特性分析[J]. 建井技术,2019,40(1):56-60,55.
[12]王 彬,荣传新,程 桦.三排管非均质冻结壁弹塑性分析[J].长江科学院院报,2019,36(8):104-111.
[13]陈军浩,刘桐宇,李栋伟. 人工三圈管冻结模型试验及冻结方案研究[J]. 煤炭科学技术,2017,45(7):94-100.
[14]陈军浩,夏红兵,李栋伟. 多圈管冻结壁温度场发展及冻结管偏斜影响[J]. 中山大学学报,2016, 55(4):56-62.
[15]陈军浩,李栋伟.多圈管冻结温度场特征分析及工程应用[J].冰川冻土,2016,38(6):1568-1574.
[16]张 松,岳祖润,张基伟,等.地铁隧道局部冻结方案设计及参数分析[J].长江科学院院报,2020,37(4):175-179.
[17]姚兆明,张 雯,郭梦圆.考虑温度效应的冻结黏土内变量蠕变模型分析[J].长江科学院院报,2020,37(12):81-85,91.
[18]王 贺,郭春香,吴亚平,等.基于弹性力学考虑冰水相变过程下多年冻土冻胀系数与冻胀率之间的关系[J].岩石力学与工程学报,2018,37(12):2839-2845.
基金
国家自然科学基金项目(41672278);福建省高校产学合作项目(2017Y4001);福建省杰出青年培育计划项目(GY-Z17070);福建工程学院科研发展基金项目(GY-Z17158)