依托厦门地区典型风化花岗岩地层的盾构隧道工程,针对多层土双线盾构隧道施工地层变形问题,以岩土体参数的空间变异性为切入点,基于随机场理论,采用蒙特卡洛法与有限差分法模拟计算相结合的方法,开展盾构隧道施工地层变形响应的可靠度分析。以土体弹性模量E的空间变异性为研究重点,系统研究土体弹性模量的竖向、水平波动距离(θz,θx)对地层变形可靠度指标的影响。结果表明:随机分析所得最大地层变形(地表沉降、拱顶沉降、围岩收敛)的可靠度指标随着土体弹性模量波动距离的增大而降低;随着最大地层变形允许值的增大,地层变形可靠度指标也相应提高。在此基础上,借助熵理论客观确定各地层变形指标(地表沉降、拱顶沉降、围岩收敛)的权重系数,结合可靠度设计方法和工程风险分析理论,开展地层变形综合可靠度分析及控制指标体系的研究,提出适合厦门地区的盾构隧道施工地层变形控制指标体系。
Abstract
Stochastic calculations, by combining the random field theory with the finite difference analysis and Monte Carlo simulation, are used to conduct reliability analysis on the surrounding soil deformation induced by twin tunneling in multi-layer soils considering the spatial variability of soil parameters. The effects of scales of fluctuation (SOF) of Young’s modulus in both vertical and horizontal directions on deformation reliability index are investigated and discussed in detail. Results demonstrate that the reliability index of maximum deformation (surface settlement, vault settlement, and surrounding rock convergence) obtained by stochastic analysis decreases with the increase of SOF, and the comprehensive reliability index of deformation increases with the increase of allowable value of deformation. Additionally, the entropy weight coefficients of deformation indices are objectively determined by using the entropy theory. Combining the reliability design method and the engineering risk analysis theory, the comprehensive reliability of deformation is analyzed, and the deformation control index system of shield tunnel suitable for Xiamen area is put forward.
关键词
双线盾构隧道 /
弹性模量 /
空间变异性 /
随机场理论 /
熵理论 /
综合可靠度 /
地层变形控制指标体系
Key words
twin tunneling /
elastic modulus /
spatial variability /
random field theory /
entropy theory /
comprehensive reliability /
deformation control index system
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]CHING Jian-ye, PHOON K K. A Quantile-based Approach for Calibrating Reliability-Based Partial Factors[J]. Structural Safety, 2011, 33(4): 275-285.
[2] CHING Jian-ye, PHOON K K. Quantile Value Method Versus Design Value Method for Calibration of Reliability-based Geotechnical Codes[J]. Structural Safety, 2013, 44(5): 47-58.
[3] 陈祖煜, 詹成明, 姚海林, 等. 重力式挡土墙抗滑稳定分析安全判据和标准[J]. 岩土力学, 2016, 37(8): 2129-2137.
[4] 陈祖煜. 建立在相对安全率准则基础上的岩土工程可靠度分析与安全判据[J]. 岩石力学与工程学报, 2018, 37(3): 521-544.
[5] CEN(European Committee for Standardization). EN 1997-1 Eurocode 7: Geotechnical design-Part 1: General rules[S]. Brussels: CEN, 2005.
[6] GB 50199—2013,水利水电工程结构可靠性设计统一标准[S]. 北京: 中国计划出版社, 2013.
[7] LUMB P. TheVariability of Natural Soils[J]. Canadian Geotechnical Journal, 1966, 3(2):74-97.
[8] VANMARCKE E H. Probabilistic Modeling of Soil Profiles[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11):1227-1246.
[9] 程红战, 陈 健, 李健斌, 等. 基于随机场理论的盾构隧道地表变形分析[J]. 岩石力学与工程学报, 2016, 35(增刊2):4256-4264.
[10]李健斌, 陈 健, 罗红星, 等. 基于随机场理论的双线盾构隧道地层变形分析[J]. 岩石力学与工程学报, 2018, 37(7):1748-1765.
[11]FENTON G A, GRIFFITHS D V. Three-dimensional Probabilistic Foundation Settlement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(2):232-239.
[12]GONG W P, LUO Z, JUANG C H, et al. Optimization of Site Exploration Program for Improved Prediction of Tunnelling-induced Ground Settlement in Clays[J]. Computers and Geotechnics, 2014, 56(3):69-79.
[13]闫文周, 顾连胜. 熵权决策法在工程评标中的应用[J]. 西安建筑科技大学学报(自然科学版), 2004, 36(1): 98-100.
[14]程乾生. 属性识别理论模型及其应用[J]. 北京大学学报(自然科学版), 1997, 33(1): 12-20.
[15]PHOON K K, KULHAWY F H. Characterization of Geotechnical Variability[J]. Canadian Geotechnical Journal, 1999, 36(4):612-624.
[16]张璐璐, 张 洁, 徐 耀, 等. 岩土工程可靠度理论[M]. 上海:同济大学出版社, 2011.
[17]Canadian Standards Association. Canadian Highway Bridge Design Code[S].Ottawa: Ministry of Transportation of Canada, 2014.
基金
云南联合基金重点项目(U1402231);湖北省技术创新重大项目(2017ACA186)