以武汉市三阳路超大直径过江“公铁合建”盾构隧道工程为依托,探讨了强震作用下岩-土交界面处隧道的损伤演化规律及地震响应包络特征。基于ABAQUS软件研发的动力有限元计算平台,建立了双隧道(含内部构件公路板与竖向隔板)-土体有限元模型,土体本构采用了修正的Davidenkov黏弹性动力本构模型,混凝土本构采用损伤塑性模型以模拟其开裂、损伤特征。计算结果表明:在岩-土交界面附近,盾构隧道衬砌的加速度、位移及应力响应均出现突变;由于隧道结构穿越了软硬土层,其破坏始于拱腰的退出工作,进而衬砌内部构件节点破坏,拱肩最后破坏;衬砌拱腰处的破坏区域均在岩-土交界面附近的软土层中;衬砌内部构件的存在使得超大直径衬砌拱侧的水平剪应力明显减小。
Abstract
The damage evolution laws and the envelope characteristics of seismic response of tunnel crossing rock-soil interface under strong earthquake were studied with the large-diameter river-crossing highway-and-subway-combined shield tunnel built in Sanyang road, Wuhan city as research background. A model composing twin tunnels (containing inner components: horizontal highway plate and vertical partition plate) and soil was established using the dynamic finite element numerical platform in ABAQUS. The dynamic viscoelastic model, modified Davidenkov model, was employed to model the characteristics of soil, while the concrete damage plasticity model was adopted to model the fracture and damage of tunnels. Results revealed abrupt changes in the acceleration, displacement, and stress response of shield tunnel lining in the vicinity of rock-soil interface. Due to the existence of rock-soil interface, the haunch of tunnel is destroyed first, and then the joints of inner components and at last the spandrel. The seismic damage of haunch mainly occurred in the soft soil part. The inner components reduced the horizontal shear stress at both sides of the large-diameter tunnel.
关键词
盾构隧道 /
衬砌 /
岩-土交界面 /
损伤演化规律 /
地震响应包络 /
强震
Key words
shield tunnel /
rock-soil interface /
damage evolution law /
seismic response envelope /
strong earthquake
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学,2008, 29(1):245-250.
[2] 刘晶波,李 彬.地铁地下结构抗震分析及设计中的几个关键问题[J]. 土木工程学报,2006,39(6):106-110.
[3] BAO X H, XIA Z F, YE G L, et al. Numerical Analysis on the Seismic Behavior of a Large Metro Subway Tunnel in Liquefiable Ground[J]. Tunnelling and Underground Space Technology, 2017, 66: 91-106.
[4] CHEN C H,WANG T T,JENG F S,et al.Mechanisms Causing Seismic Damage of Tunnels at Different Depths[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2011, 28(1):31-40.
[5] YU H, CHEN J, BOBET A, et al. Damage Observation and Assessment of the Longxi Tunnel during the Wenchuan Earthquake[J]. Tunnelling and Underground Space Technology, 2016, 54: 102-116.
[6] 王国波, 陈 梁, 徐海清,等. 紧邻多孔交叠隧道抗震性能研究[J]. 岩土力学, 2012, 33(8):2483-2490.
[7] 殷允腾, 李廷春. 土岩软硬结合部隧道结构的震害机理分析及抗震研究[J]. 现代隧道技术, 2013, 50(4):84-91.
[8] 崔光耀, 刘维东, 倪嵩陟,等. 汶川地震公路隧道普通段震害分析及震害机制研究[J]. 岩土力学, 2015, 36(增刊2):439-446.
[9] 王 维.软硬突变地层盾构隧道地震响应特性研究[D]. 成都:西南交通大学, 2015.
[10] 姚二雷,苗 雨,陈 超.考虑空间变异性的地铁隧道地震动力响应分析[J]. 重庆交通大学学报(自然科学版),2017,36(1):19-23.
[11] 楼梦麟,陈清军. 侧向边界对桩基地震反应影响的研究[M]. 上海: 同济大学,1999.
[12] 楼梦麟, 王文剑, 朱 彤,等. 土-结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动, 2000, 20(2):30-36.
[13] 赵丁凤, 阮 滨, 陈国兴,等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5):1-8.
基金
国家自然科学基金青年基金项目(51908236)