一种改进的聚合模型在污泥絮凝-沉降模拟中的应用

黄忠钊,谭立新

长江科学院院报 ›› 2017, Vol. 34 ›› Issue (3) : 8-13.

PDF(1748 KB)
PDF(1748 KB)
长江科学院院报 ›› 2017, Vol. 34 ›› Issue (3) : 8-13. DOI: 10.11988/ckyyb.20150724
江湖泥沙与治理

一种改进的聚合模型在污泥絮凝-沉降模拟中的应用

  • 黄忠钊1,2,谭立新1
作者信息 +

An Improved Aggregation Model to Simulate Flocculation-Settling of Sludge

  • HUANG Zhong-zhao1,2, TAN Li-xin1
Author information +
文章历史 +

摘要

鉴于在试验中难以观测到污泥絮团的粒径分布情况,且以往类似模拟中鲜有考虑絮团分形特征及絮团黏结效率的问题,通过一种改进的聚合模型来模拟污泥颗粒间的分形聚合机理,并在群体平衡模型(PBM)和两相流Mixture模型基础上对污泥的絮凝-沉降进行三维数值模拟。模拟结果表明:建立的数学模型能较好地反映黏性污泥分形絮凝-沉降规律,具预测絮团粒径分布的能力;在同一时刻絮团的粒径分布范围随着分形维数的降低逐渐变宽,大粒径絮团数量迅速增加,小粒径絮团数量逐渐减少;初始颗粒数量的衰减速率随分形维数的增大而增大;絮团数量总体呈先增加后减少的趋势,但当分形维数不同时,其最大值随分形维数的增大而增大,出现时间随着分形维数的增大而有所缩短。

Abstract

Since the particle size distribution of sludge is difficult to observe, and the fractal structure and the efficiency of flocculation are rarely considered in previous simulations, we established an improved aggregation model to simulate the mechanism of sludge particle aggregation and finally carried out three-dimensional simulation of flocculation-settling of sludge based on population balance model and two-phase flow mixture model. Results revealed that the established mathematical model and simulation method could well reflect the regularity of flocculation-settling of sludge. Furthermore, the particle size distribution range of floccules is widened with the decrease of fractal dimension, the number of large diameter floccules grows rapidly, and the number of small diameter floccules reduces gradually; the decay rate of initial particle number increases with the rising of fractal dimension, and the number of floccules generally increases and then decreases with time, but the maximum floccules number increases with the rising of fractal dimension, the occurence time of the maximum floccule number is shortened with the rising of fractal dimension.

关键词

改进聚合模型 / 群体平衡模型 / 污泥絮凝 / 沉降 / 絮团粒径分布 / 分形维数 / 数值模拟

Key words

improved aggregation model / population balance model / sludge flocculation / settling / particle size distribution / fractal dimension / numerical simulation

引用本文

导出引用
黄忠钊,谭立新. 一种改进的聚合模型在污泥絮凝-沉降模拟中的应用[J]. 长江科学院院报. 2017, 34(3): 8-13 https://doi.org/10.11988/ckyyb.20150724
HUANG Zhong-zhao, TAN Li-xin. An Improved Aggregation Model to Simulate Flocculation-Settling of Sludge[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(3): 8-13 https://doi.org/10.11988/ckyyb.20150724
中图分类号: TV145.2   

参考文献

[1]常 青,傅金镒,郦兆龙.絮凝原理[M].兰州:兰州大学出版社, 1992.
[2]杨铁笙,熊祥忠,詹秀玲,等.粘性细颗粒泥沙絮凝研究概述[J].水利水运工程学报,2003,6(2):65-77.
[3]FALCONER K J.The Geometry of Fractal Sets[M].Cambridge: Cambridge University Press, 1985.
[4]DU G L. Modeling Coagulation Kinetics Incorporating Fractal Theories: A Fractal Rectilinear Approach[J]. Water Research, 2000,34(7): 1987-2000.
[5]LOGAN B E, GROSSART H P, SIMON M. Direct Observation of Phytoplankton, TEP, and Aggregates on Polycarbonate Filters Using Brightfield Microscopy[J]. Journal of Plankton Research, 1994, 16(12): 1811-1815.
[6]JIANG Q, LOGAN B E. Fractal Dimension of Aggregates Determined from Steady-state Size Distributions[J]. Environmental Science and Technology,1991,25(12):2031-2038.
[7]赵 明.黏性细颗粒泥沙的絮凝及对河口生态的影响研究[D].北京:清华大学,2010.
[8]LUO H. Coalescence, Breakup and Liquid Circulation in Bubble Column Reactors[D]. Trondheim, Norway: Norwegian Institute of Technology, 1993.
[9]KRANENBURG C. The Fractal Structure of Cohesive Sediment Aggregates[J]. Estuarine, Coastal and Shelf Science, 1994,39(6):451-460.
[10]DE CLERCQ J, JACOBS F, DAVID J. Kinnear. Detailed Spatio-temporal Solids Concentration Profiling During Batch Settling of Activated Sludge Using a Radiotracer [J]. Water Research, 2005, 39(10): 2125-2135.

基金

陕西省重点学科建设专项资助项目(106-00X92)

PDF(1748 KB)

Accesses

Citation

Detail

段落导航
相关文章

/