为提高滑坡易发性评价的准确性和精度,结合随机森林(FR)模型和信息量(IV)模型2种方法,提出一种新的加权信息量(WIV)模型。以西安市临潼区为研究区,基于野外调查和因素相关性分析,选取坡度、坡向、高程、曲率、地形起伏、岩土体类型、降雨量、断层、水系和道路10个影响因子,以全区72个滑坡灾害点为样本数据,分别采用FR模型、IV模型和WIV模型对研究区开展滑坡易发性评价。结果表明:WIV模型训练样本的成功率和预测率比FR模型分别高4.9%和1.9%,比IV模型分别高17.80%和4.70%;滑坡灾害点高易发区和极高易发区多分布在断层、河流及道路集中区域,且其滑坡灾害点比例WIV模型比IV模型、FR模型分别提高6.37%和4.45%;WIV模型易发性评价分区结果与研究区实际情况相近。研究成果可为防灾减灾工程提供科学依据。
Abstract
A weighted information value (WIV) model integrating random forest (FR) model and information value (IV) model is proposed in an attempt to improve the precision and accuracy of landslide susceptibility assessment. Lintong District of Xi'an City is taken as the research area. According to field survey and factor correlation analysis, ten factors including slope gradient, slope aspect, elevation, curvature, topographic relief, rock and soil type, rainfall, fault, water system, and road are selected as influence factors for the assessment. With 72 landslide hazard points as sample data, the landslide susceptibility is assessed using RF model, IV model and WIV model, respectively. Results demonstrate that the success rate and prediction rate of WIV model training samples are higher than those of FR model by 4.90% and 1.90%, respectively, and higher than those of IV model by 7.80% and 4.70%, respectively. Highly and extremely highly susceptible areas are mainly distributed in faults, rivers and roads. The rate of landslide hazard points in highly and extremely highly susceptible areas by WIV model is 6.37% and 4.44% higher than that by IV model and FR model, respectively. In conclusion, the results of WIV model are consistent with the actual situation of the research area.
关键词
滑坡易发性 /
评价因子 /
随机森林模型 /
信息量模型 /
加权信息量模型 /
西安市临潼区
Key words
landslide susceptibility /
assessment factor /
random forest model /
information value model /
weighted information value model /
Lintong District of Xi'an City
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡瑞林,范林峰,王珊珊,等.滑坡风险评价的理论与方法研究[J].工程地质学报,2013,21(1):76-84.
[2] 谈树成,赵晓燕,李永平,等.基于GIS与信息量模型的地质灾害危险性评价:以云南省丘北县为例[J].西北师范大学学报(自然科学版),2018,54(1):67-76.
[3] 刘宇恒,邓 辉,熊倩莹.基于层次分析法的茂县斜坡地质灾害易发性评价[J].长江科学院院报,2017,34(5): 31-35.
[4] 胡启芳,范 雷,董治军,等.基于模糊综合评价的改进层次分析法在滑坡危险评价中的应用[J].长江科学学院院报,2014,31(5):29-33.
[5] 贾贵义,全永庆,黎志恒,等.基于组合赋权法的白龙江流域甘肃段地质灾害危险性评价[J].冰川冻土院报,2014, 36(5):1227-1236.
[6] 许 冲,徐锡伟.逻辑回归模型在玉树地震滑坡危险性评价中的应用与检验[J].工程地质学报,2012,20(3):326-333.
[7] CHEN Wei, XIE Xiao-shen, PENG Jian-bing, et al. GIS-based Landslide Susceptibility Evaluation Using a Novel Hybrid Integration Approach of Bivariate Statistical Based Random Forest Method[J]. Catena, 2018, 164(1): 135-149.
[8] 安凯强,牛瑞卿.信息量支持下SVM模型滑坡灾害易发性评价[J].长江科学学院院报,2016,33(8):47-51,58.
[9] 黄发明,殷坤龙,蒋水华,等.基于聚类分析和支持向量机的滑坡易发性评价[J].岩石力学与工程学报,2018,37(1): 156-167.
[10]刘 琳.临潼区地质灾害危险性分区与评价[D].西安:西安科技大学,2008.
[11]方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛,2011,26(3):32-37.
[12]樊芷吟,苟晓峰,秦明月,等.基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J].工程地质学报,2018,26(2):340-347.
[13]方教勇.基于GIS的清平地区滑坡分布分形特征与危险性评价研究[D].成都:成都理工大学,2018.
[14]刘学军,王叶飞,曹志东,等.基于DEM的地形曲率计算模型误差分析[J].测绘科学,2006, 31(5):50-53.
基金
国家自然科学基金项目(41572287);陕西省科技统筹创新工程计划项目(2016KTCL03-19);陕西省煤田地质局科技计划项目(JB2014-4)