长江科学院院报 ›› 2021, Vol. 38 ›› Issue (5): 47-54.DOI: 10.11988/ckyyb.20200705

• 工程安全与灾害防治 • 上一篇    下一篇

基于EEMD-LSTM-MLR的大坝变形组合预测模型

马佳佳1,2, 苏怀智1,2, 王颖慧1,2   

  1. 1.河海大学 水文水资源与水利工程科学国家重点实验室,南京 210098;
    2.河海大学 水利水电学院,南京 210098
  • 收稿日期:2020-07-16 修回日期:2020-10-28 出版日期:2021-05-01 发布日期:2021-05-17
  • 通讯作者: 苏怀智(1973-),男,内蒙古鄂尔多斯人,教授,博士,主要从事涉水工程安全防控与提能延寿研究。E-mail:su_huaizhi@hhu.edu.cn
  • 作者简介:马佳佳(1996-),男,江苏徐州人,硕士研究生,主要从事水工结构与大坝安全监测研究。E-mail:hhumajj@163.com
  • 基金资助:
    国家重点研发计划课题项目(2019YFC1510801,2018YFC0407101);国家自然科学基金项目(51979093)

Combinatorial Prediction Model for Dam Deformation Based on EEMD-LSTM-MLR

MA Jia-jia1,2, SU Huai-zhi1,2, WANG Ying-hui1,2   

  1. 1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China;
    2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
  • Received:2020-07-16 Revised:2020-10-28 Online:2021-05-01 Published:2021-05-17

摘要: 大坝变形监测数据序列具有非平稳、非线性特征,是水压、温度和时效综合作用的结果。引入集合经验模态分解(EEMD)方法处理变形数据,在得到多尺度大坝变形分量的基础上,对于其变化复杂的高频分量,采取长短期记忆神经网络(LSTM)以获得较优预测结果;对于周期性变化的低频分量,借助多元线性回归(MLR)实现快捷且有效的预测;最终通过分量重构,得到大坝变形的预测结果。工程实例分析表明:EEMD方法避免了模态混叠现象,可以得到更为合理的多尺度变形分量;LSTM和MLR分别对高、低频分量具有良好的预测能力。将分量叠加重构的最终结果分别与多种单一预测算法、基于EMD的组合算法以及传统模型等预测效果比较表明,基于EEMD-LSTM-MLR的组合预测模型的平均绝对误差(MAE)、平均绝对百分误差(MAPE)及均方根误差(RMSE)均低于上述对比模型,有着更高的预测精度,为大坝变形预测提供了新的思路。

关键词: 大坝变形, 组合预测模型, 集合经验模态分解, 长短期记忆神经网络, 多元线性回归

Abstract: Under the combined action of water pressure, temperature and aging, dam deformation monitoring data series is non-stationary and nonlinear. We introduced the method of Ensemble Empirical Mode Decomposition (EEMD) to process deformation data and obtained the multi-scale dam deformation components. For the complex high frequency components, we employed the Long and Short Term Memory network (LSTM) to achieve better prediction results; for low frequency components with periodic changes, we adopted Multiple Linear Regression (MLR) for rapid and effective prediction. Through the refactoring of components we can acquire the predicted result of dam deformation. Analysis of engineering examples demonstrated that the EEMD method avoided modal aliasing and attained more reasonable multi-scale deformation components. LSTM and MLR have good predictive ability for high and low frequency components respectively. By comparing the result of components superposition separately with those of a variety of single prediction algorithms, EMD decomposition algorithm, and traditional models, we found that the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE) of the EEMD-LSTM-MLR combinatorial model were lower than the comparative models above, indicating higher prediction precision.

Key words: dam deformation, combinatorial prediction model, Ensemble Empirical Mode Decomposition, Long and Short Term Memory network, Multiple Linear Regression

中图分类号: