长江科学院院报 ›› 2020, Vol. 37 ›› Issue (10): 64-68.DOI: 10.11988/ckyyb.201908315
胡安玉1,2, 包腾飞1,2,3, 杨晨蕾1,2, 张静缨1,2
HU An-yu1,2, BAO Teng-fei1,2,3, YANG Chen-lei1,2, ZHANG Jing-ying1,2
摘要: 大坝变形是水压、温度等多种因素综合作用的结果,变形监测数据是非平稳非线性的时间序列,并且在时间维度上具有关联性。为充分挖掘变形监测数据在长短时间跨度上的关联性,提出了应用长短期记忆网络(LSTM)预测大坝变形的方法。为进一步提升预测精度,利用自回归差分移动平均模型(Arima)对预测残差进行误差修正,从而建立基于LSTM-Arima的大坝变形组合预测模型。以某混凝土重力坝为例,将组合模型的预测结果与Arima模型、支持向量机(SVM)的预测结果进行对比分析。结果表明LSTM-Arima的预测结果优于Arima模型和SVM的预测结果,LSTM-Arima的均方根误差(RMSE) 比Arima模型和SVM分别降低了40.65%和59.00%,平均绝对误差(MAE)分别降低了35.49%和55.60%,表明LSTM-Arima模型具有较高的预测精度。研究成果对于更精确地开展大坝变形预测有一定参考价值。
中图分类号: