长江科学院院报 ›› 2020, Vol. 37 ›› Issue (7): 96-104.DOI: 10.11988/ckyyb.20190290

• 岩土工程 • 上一篇    下一篇

不同加固方案下富水黄土隧道地层变形规律分析

霍润科1,2, 秋添1,2, 李曙光1,2,3,4, 曹新祥5, 钱美婷1,2   

  1. 1.西安建筑科技大学 土木工程学院,西安 710055;
    2.西安建筑科技大学 陕西省岩土与地下空间工程重点实验室,西安 710055;
    3.中铁二十局集团有限公司 博士后科研工作站,西安 710016;
    4.中铁二十局集团有限公司 高原隧道施工技术及装备研发中心,西安 710016;
    5.青岛北洋建筑设计有限公司,山东 青岛 266101
  • 收稿日期:2019-03-19 出版日期:2020-07-01 发布日期:2020-08-06
  • 通讯作者: 曹新祥(1993-),男,山东潍坊人,硕士研究生,主要从事城市地铁与隧道工程数值模拟。E-mail:1045637258@qq.com
  • 作者简介:霍润科(1963-),男,陕西岐山人,教授,博士,主要从事城市地铁与隧道工程数值模拟。E-mail:huorkdq@xauat.edu.cn
  • 基金资助:
    国家自然科学基金项目(41172237);中铁二十局集团有限公司2020年度科技研发项目(YF2000SD01A)

Strata Deformation Law of Water-rich Loess Tunnel in Different Reinforcement Schemes

HUO Run-ke1,2, QIU Tian1,2, LI Shu-guang1,2,3,4, CAO Xin-xiang5, QIAN Mei-ting1,2   

  1. 1. School of Civil Engineering,Xi'an University of Architecture & Technology, Xi'an 710055, China;
    2. Shaanxi Provincial Key Laboratory of Geotechnical and Underground Space Engineering, Xi'an 710055, China;
    3. Post-doctoral Research Workstation, China Railway 20th Bureau Group Co., Ltd., Xi'an 710016, China;
    4. R & D Center of Plateau Tunnel Construction Technology and Equipment, China Railway 20th Bureau Group Co., Ltd., Xi'an 710016, China;
    5. Qingdao Beiyang Design Group Co., Ltd., Qingdao 266101, China
  • Received:2019-03-19 Online:2020-07-01 Published:2020-08-06

摘要: 以西安地铁5号线暗挖隧道为工程背景,采用降水加固与注浆加固2种地层加固措施,建立渗流-应力耦合数值计算模型,对富水黄土隧道地表沉降、洞周土体变形及力学效应进行了研究,并结合现场监测资料进行了验证。结果表明:降水加固隧道施工最大地表沉降是注浆加固的13.7倍,2种加固方案洞周土体变形规律一致,开挖10 d内变形值均达到稳定值的70%~80%左右;注浆加固下洞周土体均为压应力,降水加固开挖过程中在中隔壁及中隔板处土层出现拉应力;注浆加固下衬砌各部位受力均大于降水加固;降水加固塑性区极值是注浆加固的11.3倍,主要分布在两侧拱肩、拱腰及拱脚处;2种加固方案下地表沉降以及洞周土体变形的模拟值与监测值相近且变化规律基本一致。

关键词: 富水黄土隧道, 地层变形规律, 降水加固, 注浆加固, 数值模拟, 现场监测

Abstract: With the tunnel segment of Xi'an Metro Line 5 as engineering background, we examined and compared the ground settlement, soil deformation around the tunnel, and mechanics effect of water-rich loess tunnel reinforced by different methods (dewatering reinforcement and grouting reinforcement) via a seepage-stress coupling numerical model. We further validated the numerical result according to site monitoring data. Results demonstrated that the maximum ground settlement of the tunnel strengthened by dewatering reinforcement was 13.7 times that by grouting reinforcement. The laws of soil deformation around the tunnel under these two reinforcement schemes were consistent, and the deformation value of surrounding rock in ten days of excavation reached about 70%-80% of the stable value. Soil around the tunnel suffered from compressive stress under grouting reinforcement, while tensile stress appeared in the soil layer of the middle wall and the middle plate during the excavation under dewatering reinforcement. The stress of the lining under grouting reinforcement was larger than that under dewatering reinforcement. The extreme value of plastic zone under dewatering reinforcement was 11.3 times that of grouting reinforcement, mainly distributing at the shoulders, waists and feet of the arch on both sides. The simulated values of ground settlement and soil deformation around the tunnel under the two reinforcement schemes were similar and basically consistent with the change law of the monitored value.

Key words: water-rich tunnel, strata deformation control, dewatering reinforcement, grouting reinforcement, numerical simulation, on-site monitoring

中图分类号: