长江科学院院报 ›› 2016, Vol. 33 ›› Issue (8): 18-21.DOI: 10.11988/ckyyb.20150474
张建锋a,b,c,刘见宝a,c,崔树军a,b,c,谢玉华a
ZHANG Jian-feng1, 2, 3, LIU Jian-bao1,3, CUI Shu-jun1, 2, 3, XIE Yu-hua1
摘要: 由于过量开采地下水,华北平原的许多城市出现地下水水位持续下降趋势,由此导致了许多严重的环境问题,如地下水枯竭、地面沉降和海水入侵等。为了准确预测城市地下水水位变化,利用小波变换的多尺度分析特征,建立了小波-神经网络混合模型(以下简称“混合模型”),并研究了其在地下水水位预测中的精度。利用北京市平谷区地下水水位观测资料,分别用BP网络和混合模型对该区地下水水位进行了预测。采用均方根误差(RMSE)、平均绝对误差(MAE)和线性相关系数(R)对模型预测的精度进行度量。预测结果表明混合模型第1至第3个月的地下水水位平均绝对误差分别是0.535,0.598和0.634 m;而BP模型的平均绝对误差分别为0.566,0.824和0.940 m。混合模型的预测误差分别为BP模型的95%,73%和67%。使用混合模型能明显提高预测的精度,显著增加有效预测时段长度。
中图分类号: