长江科学院院报 ›› 2016, Vol. 33 ›› Issue (2): 48-51.DOI: 10.11988/ckyyb.20140801

• 工程安全与灾害防治 • 上一篇    下一篇

基于IPSO-RVM的大坝安全预警模型

范振东1a,1b, 崔伟杰2, 陈敏1a,1b, 杜传阳1a,1b   

  1. 1.河海大学 a.水文水资源与水利工程科学国家重点实验室; b.水利水电学院,南京 210098;
    2.雅砻江流域水电开发有限公司,成都 610051
  • 收稿日期:2014-09-16 出版日期:2016-02-01 发布日期:2016-02-17
  • 作者简介:范振东(1991-),男,福建三明人,硕士研究生,主要从事水工结构安全监控研究,(电话)15151859337 (电子信箱)380845892@qq.com。
  • 基金资助:
    国家自然科学基金项目(51179066);高等学校博士学科点专项科研基金资助课题项目(20130094110010);江苏省杰出青年基金项目(BK2012036);水利部公益性行业科研专项经费项目(201301061)

Prewarning Model for Dam Safety Based on IPSO-RVM

FAN Zhen-dong1,2, CUI Wei-jie3, CHEN Min1,2, DU Chuan-yang1,2   

  1. 1.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China;
    2.College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China;
    3. Yalong River Hydropower Development Company, Ltd., Chengdu 610051, China
  • Received:2014-09-16 Online:2016-02-01 Published:2016-02-17

摘要: 针对SVM(Support Vector Machine,支持向量机)存在支持向量个数较多、核函数要求严格等不足,将性能更出色的RVM((Relevance Vector Machine,相关向量机)用于大坝安全预警模型的构建。核函数及其参数对RVM模型的性能有着重要的影响,组合局部核函数和全局核函数的混和核函数能提高模型的拟合精度和泛化能力,利用PSO(Particle Swarm Optimization,粒子群算法)能有效地对核参数进行寻优,针对标准PSO算法容易陷入局部最优点的缺陷,提出IPSO(Improved Particle Swarm Optimization,改进的粒子群算法)。将上述组合算法用于大坝安全模型的建立,实例分析表明,基于上述算法模型的性能得到了一定程度的提高。

关键词: 大坝安全建模, 相关向量机, 混合核函数, 自适应粒子群算法, 拟合精度, 泛化能力

Abstract: In view of the disadvantages of SVM (support vector machine) such as a large number of support vectors and strict demand for kernel function, we introduce RVM (relevance vector machine) to establish dam safety model which has better performance. Kernel function and its parameters have important effects on the performance of the RVM model. Mixed kernel function in association with local and global kernels can improve the fitting accuracy and generalization ability of the model. The optimized parameters of the kernel function can be effectively found by using PSO (particle swarm optimization) algorithm. However, the defect of local optimal point easily occurs in normal PSO algorithm. In light of this, we apply an algorithm of improved particle swarm optimization (IPSO). On the basis of combined algorithms above, we establish a model for dam safety, and the results indicate that the performance of RVM model with hybrid kernel is superior to that of conventional model.

Key words: dam safety modeling, relevance vector machine, hybrid kernel function, adaptive particle swarm optimization, fitting accuracy, generalization ability

中图分类号: