长江科学院院报 ›› 2013, Vol. 30 ›› Issue (6): 76-79.DOI: 10.3969/j.issn.1001-5485.2013.06.017

• 岩土工程 • 上一篇    下一篇

不确定性大坝地基几何尺寸智能识别初探

黄耀英1,2a,2b,郑宏2a,2b,向衍3,付学奎1   

  1. 1.三峡大学 水利与环境学院,湖北 宜昌443002;
    2.中国科学院 a.武汉岩土力学研究所;b.岩土力学与工程国家重点实验室,武汉430071;
    3.南京水利科学研究院,南京210024
  • 收稿日期:2012-06-04 修回日期:2013-06-04 出版日期:2013-06-04 发布日期:2013-06-04
  • 作者简介:黄耀英(1977-),男,湖南郴州人,副教授,博士,主要从事大坝安全监控及数值计算方面的研究,(电话)13997662901(电子信箱)huangyaoying@sohu.com。

Preliminary Discussion on Intelligent Identification of Dam Foundation’s Uncertain Geometry Size

HUANG Yao ying 1,2,3 , ZHENG Hong 2,3 , XIANG Yan 4, FU Xue kui 1   

  1. 1.College of Hydraulic & Environmental Engineering, China Three Gorges University,Yichang 443002, China; 2.Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 3.State Key Laboratory of Geomechanics and Geotechnical Engineering, Chinese Academy of Sciences, Wuhan 430071, China;4.Nanjing Hydraulic Research Institute, Nanjing 210024, China
  • Received:2012-06-04 Revised:2013-06-04 Online:2013-06-04 Published:2013-06-04

摘要:

大坝地基实际几何尺寸存在不确定性,将监测点相对位移作为输入,坝体混凝土、岩基材料参数和地基几何尺寸作为输出,建立了不确定性地基几何尺寸识别神经网络模型。该模型采用均匀设计原理进行材料参数组合,根据不同地基几何尺寸建立的大坝-地基有限元模型的稳定渗流体荷载分布,获得样本进行学习,以此训练好的网络来描述大坝混凝土、岩基材料参数及地基几何尺寸和坝体变形的非线性关系。将大坝实测位移分离出的水压分量输入训练好的网络,可自动识别出大坝混凝土和岩基的材料参数以及地基几何尺寸。算例分析表明,建立的不确定性大坝地基几何尺寸识别神经网络模型是可行的。

关键词: 地基几何尺寸, 不确定性, 智能识别, 混凝土坝

Abstract:

The actual geometric size of dam foundation is uncertain. In this research, a neural network model for the intelligent identification of the uncertain geometric size of dam foundation is established. The model takes the relative displacement of monitoring points as input, and the dam concrete, rock foundation material parameters and foundation’s geometric size as output. The load distribution of steady seepage body is obtained, and on the basis of material parameters combined according to uniform design principle, the relative displacement of key monitoring points were calculated as the learning samples. The trained network describes the nonlinear relationship among the dam concrete, rock foundation material parameters and the foundation’s geometric size and dam deformation. The water pressure component separated from the measured dam displacement is input into the trained network to automatically identify the dam concrete and rock foundation material parameters and the foundation’s geometric size. Calculation example shows that this model is feasible.

Key words: foundation’s geometric size, uncertainty, intelligent identification, concrete dam

中图分类号: