在水文模型率定过程中,不同目标函数侧重于径流模拟的不同层面。为了探究目标函数选择的不确定性对模型参数和径流模拟的影响,将HyMod模型应用于黄河源区,选择纳什效率函数fNS、总水量平衡误差函数ft、低水量误差函数fd和高水量误差函数fg作为目标函数,采用遗传算法(GA)分别率定出不同目标函数下对应的最优参数值,并依次代入水文模型模拟水文过程;通过对比分析年尺度及年内各月实测与模拟径流过程、纳什效率系数NSE、决定系数R2和均方根误差RMSE评价指标来探究参数率定的目标函数不确定性对年尺度水资源演变过程的影响。结果表明:当HyMod模型应用于黄河源区水文模拟的率定期和验证期时,目标函数选择的不确定性对各评价指标的影响差异明显,如fNS目标函数下NSE值最大,在fg下次之,在fd下最小,此外率定期模拟精度优于验证期;同样,目标函数不确定性对不同特征时期径流的影响差异显著,其中,fNS和ft目标函数下,非汛期分别高估和低估模拟流量。研究成果可为水文模型参数率定目标函数的选择提供理论参考。
Abstract
In the process of hydrological model calibration, different objective functions focus on different aspects of runoff simulation. In this paper, the HyMod model is applied to the source region of the Yellow River to explore the uncertainty of choosing objective functions and the influence of such uncertainty on runoff simulation. The Nash efficiency function fNS, the total error of water balance function ft, the low water error function fd and high error function fg are selected as objective functions. The optimal parameter sets corresponding to different objective functions are calibrated by using the genetic algorithm (GA), and are put into hydrological model in turn to simulate the hydrological processes. By comparing the yearly scale and monthly scale measured and simulated runoff processes as well as evaluation indicators such as Nash-Sutcliffe efficiency coefficient(NSE), cofficient of determination(R2) and Root Mean Square Error(RMSE), the impact of uncertainty of objective function on water resource evolution in yearly scale can be obtained. Results demonstrate that the impact of uncertainty on evaluation indicators differs remarkably when HyMod model is applied to the hydrological simulation in the source area of Yellow River in calibration and validation periods. For example, under fNS objective function, the value of NSE is the largest, followed by fg and fd in sequence. In addition, the accuracy of calibration period is superior to that of verification period. Similarly, the impact of uncertainty differs in various characteristic periods. For example, under fNS and ft objective functions, the simulated flow values in non-flood season are respectively overestimated and underestimated. The research findings offer theoretical reference for the selection of objective functions in calibrating hydrological model parameters.
关键词
参数率定 /
不确定性 /
目标函数 /
水文模拟 /
HyMod模型 /
黄河源区
Key words
parameter calibration /
uncertainty /
objective function /
hydrological simulation /
HyMod model /
source region of the Yellow River
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐宗学,程 磊.分布式水文模型研究与应用进展[J].水利学报,2010,41(9):1009-1017.
[2] 郝芳华,陈利群,刘昌明,等.降雨的空间不均性对模拟产流量和产沙量不确定的影响[J].地理科学进展,2003(5):446-453.
[3] 龚 伟,杨大文.水文变量高维非线性相关分析与水文模型结构不确定性评估[J].水力发电学报, 2013, 32(5):13-20.
[4] SELLAMI H,LA JEUNESSE I,BENABDALLAH S,et al. Parameter and Rating Curve Uncertainty Propagation Analysis of the SWAT Model for Two Small Mediterranean Catchments[J]. Hydrological Sciences Journal, 2013, 58(8):1635-1657.
[5] 陈昌军,郑雄伟,张卫飞.三种水文模型不确定性分析方法比较[J].水文,2012(2):16-20.
[6] 刘卫林,叶 咏,朱圣男.基于SUFI-2算法的SWAT模型在抚河临水流域径流模拟中的应用[J].水利规划与设计,2018,180(10):60-64.
[7] 董洁平,李致家,戴健男.基于SCE-UA算法的新安江模型参数优化及应用[J].河海大学学报(自然科学版),2012(5):485-490.
[8] TAO Pan, WU Shao-hong, YIU Yu-jie L, et al. Relative Contributions of Land Use and Climate Change to Water Supply Variations over Yellow River Source Area in Tibetan Plateau during the Past Three Decades[J]. PLOS ONE, 2015, 10(4): e0123793.
[9] 李开明,李 绚,王翠云.黄河源区气候变化的环境效应研究[J].冰川冻土,2013, 35(5):1183-1192.
[10]MOORE R J. The Probability-distributed Principle and Runoff Production at Point and Basin Scales[J]. Hydrological Sciences Journal, 1985, 30(2): 273-297.
[11]宋文献,江善虎,杨春生. SCE-UA、SCEM-UA算法对改进的HYMOD模型模拟结果的影响[J].水电能源科学,2013(11):17-20.
[12]宋晓猛,孔凡哲,占车生.基于统计理论方法的水文模型参数敏感性分析[J].水科学进展,2012, 23(5):642-649.
基金
国家自然科学基金项目(5167090778)