PDF(8135 KB)
平陆运河新坪水支流汇入口河段通航水流条件优化试验
杨亚男, 周世良, 王云莉, 严春浩, 樊皓东, 向美焘
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (3) : 92-98.
PDF(8135 KB)
PDF(8135 KB)
平陆运河新坪水支流汇入口河段通航水流条件优化试验
Optimization Test on Navigable Flow Conditions at Confluence of Xinpingshui Tributary of Pinglu Canal
运河通航水流条件直接关系着船舶航行安全,通过整治工程能够有效改善对通航不利的水流条件。平陆运河工程对原河道加宽挖深后,原河道沿线汇入支流会与运河产生较大河底高程差,支流直接以高落差入汇会对干流通航水流条件产生不良影响。新坪水支流是其中与运河具有较大河底落差与较大交汇角度的代表性支流之一,为确保平陆运河通航顺畅,通过定床河工模型试验,研究新坪水支流汇入口河段通航水流条件,提出整治方案。结果表明:在运河修建基础上,加宽干支流河道、沿支流口增设消力池及导流堤后,各洪水工况下的通航水流条件均得到显著改善。研究结果能为类似河段航道整治提供参考。
The navigation flow conditions of canal directly impact ship navigation safety. Channel regulation measures can effectively alleviate unfavorable flow conditions. In the Pinglu Canal project, after the original channel was widened and deepened, a significant bottom elevation difference emerged between the canal and the tributaries along the original river course. These tributaries, entering the confluence with a large drop, adversely affect the navigable flow conditions of the mainstream. Xinpingshui is a representative tributary with a large riverbed elevation difference and a wide intersection angle with the canal. To ensure smooth navigation in the Pinglu Canal, we conducted fixed-bed model tests to investigate the navigable flow conditions at the confluence of the Xinpingshui tributary and the main canal. Based on the test results, we proposed corresponding regulation measures. Results indicate that, on the basis of the canal construction, widening both the main and tributary channels and installing additional dissipation pools and diversion dikes at the tributary mouths significantly improve the navigational flow conditions under various flood scenarios. The findings of this study can serve as a reference for improving navigation channels in similar river reaches.
平陆运河 / 航道水流 / 支流汇入口 / 通航水流条件 / 定床物理模型
Pinglu Canal / channel current / tributary inlet / navigation flow condition / fixed-bed physical model
| [1] |
翟亚彤. 堤线优化对斜接型交汇口水力特性的影响研究[D]. 西安: 西安理工大学, 2018.
(
|
| [2] |
|
| [3] |
周家俞, 徐奎, 黄成林, 等. 西津水利枢纽二线船闸下游引航道右岸支流汇入口消能设施设计[J]. 水运工程, 2018(12):119-122,146.
(
|
| [4] |
付中敏, 谷祖鹏, 郑惊涛, 等. 干支流汇合口水力特性的试验性研究[J]. 水运工程, 2013(4): 46-51.
(
|
| [5] |
毛森浩, 王威, 张铭, 等. 干支流垂直交汇下跌水工程下游通航水流条件优化[J]. 水利水运工程学报, 2023(3): 29-37.
(
|
| [6] |
刘同宦, 郭炜, 王协康, 等. 入汇角为30°时交汇区水流结构试验研究[J]. 长江科学院院报, 2007, 24(4):75-78.
通过水槽试验,应用声速多普勒测速仪(ADV),研究了入汇角为30°时,支流斜接主流交汇区及其附近的三维水流结构,获得了不同主支汇流比下的三维流场及其脉动特性。试验表明:在交汇区三维流场中,产生了回流分离区,其中并伴随环流结构,大大改变了单一明渠中的流速分布及脉动特性。在入汇口下游主流右侧(入汇口一侧)水流脉动强度在z/h=0.2处易出现极大值,其形成机理还有待验证。
(
The 3D flow field and turbulent characteristics of an open channel confluence at junction angle 30° with different discharge ratios are studied by means of ADV in the channel model test. The test results indicates that a discharging area and a return flow separation zone occur in the 3D flow field of the confluence region, thus resulting in greatly changing the distributions of velocity and pressure as well as turbulent characteristics in comparison with an unitary channel, and that the maximum value of fluctuating intensity occurs at the point of z/h=0.2near the right-side of releasing region of downstream confluence inlet.
|
| [7] |
吴迪, 郭维东, 刘卓也. 复式断面河道“Y”型交汇河口水流水力特性[J]. 水利水电科技进展, 2007, 27(3):21-23.
(
|
| [8] |
王梅力, 陈秀万, 林孝松, 等. 长江上游干支流汇合口河道特征研究[J]. 水利水运工程学报, 2014(4): 58-64.
(
|
| [9] |
JTS 180-2—2011, 运河通航标准[S]. 北京: 人民交通出版社, 2012.
(JTS 180-2—2011, Navigation Standard of Canal[S]. Beijing: China Communications Press, 2012. (in Chinese))
|
| [10] |
JTS/T 231—2021, 水运工程模拟试验技术规范[S]. 北京: 人民交通出版社, 2021.
(JTS/T 231—2021, Technical Code of Modelling Test for Port and Waterway Engineering[S]. Beijing: China Communications Press, 2021. (in Chinese))
|
| [11] |
杨胜发. 平陆运河工程可行性研究[R]. 重庆: 重庆交通大学, 2022.
(
|
| [12] |
靳高阳, 何俊. 平陆运河工程对钦江流域防洪的影响与思考[J]. 水利规划与设计, 2023(12):16-18,43.
(
|
| [13] |
侯志强, 王义安, 陈一梅. 支流入汇对干流航道影响分析[J]. 现代交通技术, 2006, 3(4): 70-73.
(
|
| [14] |
王协康, 杨青远, 卢伟真, 等. 交汇水流分离区特征研究[J]. 四川大学学报(工程科学版), 2008, 40(6):1-6.
(
|
/
| 〈 |
|
〉 |