水流挟沙力变化是研究水库下游悬沙输移及河道演变的核心问题之一。以长江中游沙市—汉口沙质河段为研究对象,引入韩其为非均匀悬移质不平衡输沙中水量百分数、挟沙能力级配等概念,阐释了三峡建库前后非均匀悬移质挟沙力变化及其影响因素。建库后,沙市、监利站各流量级下床沙转为挟沙力的水量百分数均明显增加,螺山、汉口站分别超过临界流量30 000 m3/s和35 000 m3/s时,床沙转为挟沙力的水量百分数有所增加;沙市—城陵矶河段水流挟沙力减小程度大于城陵矶—汉口河段,其中沙市—城陵矶河段<0.125 mm粒径组挟沙力大幅减小,城陵矶—汉口河段<0.25 mm粒径组挟沙力减小。沙市—城陵矶河段水流挟沙力减小主要受挟沙力平均沉速ω*变化影响,城陵矶—汉口河段水流挟沙力减小受挟沙力平均沉速ω*和挟沙力判数U3/h的共同影响,其中螺山、汉口站分别不超过临界流量30 000 m3/s和35 000 m3/s时,挟沙力判数U3/h的贡献率较大。
Abstract
Sediment carrying capacity (SCC) is a crucial factor in the study of suspended sediment transport and channel evolution in the downstream of reservoirs. This study focuses on the river reach from Shashi to Hankou in the midstream of Yangtze River. By introducing two concepts in the non-equilibrium suspended sediment transport theory proposed by Han Qiwei, namely, the percentage of flow discharge which changes bed load into suspended load, and the particle gradations of sediments carried in flows, we examined the changes, and factors affecting the changes in the non-uniform suspended sediment carrying capacity after the construction of the Three Gorges Dam (TGD). Following the completion of TGD, Shashi and Jianli stations witnessed a significant increase in the percentage of flow discharge under various discharge levels. Specifically, when the discharge exceeded 30 000 m3/s at Luoshan station and 35 000 m3/s at Hankou station, the percentage of flow discharge increased. Shashi-Chenglingji reach experienced a more pronounced decrease in sediment carrying capacity than Chenglingji-Hankou reach. Moreover, the carrying capacity for sediment particles smaller than 0.125 mm declined significantly in Shashi-Chenglingji reach, while particles smaller than 0.25 mm reduced in Chenglingji-Hankou reach. The reduction of sediment carrying capacity in Shashi-Chenglingji reach is primarily attributed to the influence of ω* (which is the average settling velocity of sediments), while in Chenglingji-Hankou reach, it is jointly affected by U3/h (a factor of SCC) and ω*. Notably, U3/h plays a more prominent role when the critical discharge at Luoshan and Hankou does not exceed 30 000 m3/s and 35 000 m3/s, respectively.
关键词
水流挟沙力 /
不平衡输沙 /
非均匀悬移质 /
三峡水库 /
长江中游
Key words
sediment carrying capacity /
non-equilibrium sediment transport /
non-uniform suspended load /
Three Gorges reservoir /
midstream of Yangtze River
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 卢金友, 姚仕明. 水库群联合作用下长江中下游江湖关系响应机制[J]. 水利学报, 2018, 49(1): 36-46.
[2] 卢金友, 朱勇辉. 水利枢纽下游河床冲刷与再造过程研究进展[J]. 长江科学院院报, 2019, 36(12): 1-9.
[3] CELLINO M,GRAF W H.Sediment-Laden Flow in Open-Channels under Noncapacity and Capacity Conditions[J]. Journal of Hydraulic Engineering,1999,125(5):455-462.
[4] 惠遇甲. 挟沙水流的运动机理和输沙能力[J]. 水动力学研究与进展(A辑), 1996, 11(2): 133-149.
[5] VAN RIJN L C. Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport[J]. Journal of Hydraulic Engineering, 2007, 133(6): 668-689.
[6] 张瑞瑾, 谢鉴衡, 陈文彪. 河流动力学[M]. 武汉: 武汉大学出版社, 2007.
[7] 舒安平. 水流挟沙能力公式的转化与统一[J]. 水利学报, 2009, 40(1): 19-26, 32.
[8] 费祥俊, 吴保生, 傅旭东. 两相非均质流输沙平衡关系及挟沙力研究[J]. 水利学报, 2015, 46(7): 757-764.
[9] 胡海明, 李义天. 非均匀沙的运动机理及输沙率计算方法的研究[J]. 水动力学研究与进展(A辑), 1996, 11(3): 284-292.
[10] 张红武, 张 清. 黄河水流挟沙力的计算公式[J]. 人民黄河, 1992, 14(11): 7-9, 61.
[11] 赵连军, 谈广鸣, 韦直林, 等. 黄河下游河道悬移质泥沙与床沙交换计算研究[J]. 水科学进展, 2005, 16(2): 155-163.
[12] 郭庆超. 天然河道水流挟沙能力研究[J]. 泥沙研究, 2006(5): 45-51.
[13] 周美蓉, 夏军强, 邓珊珊, 等. 低含沙量条件下张瑞瑾挟沙力公式中参数确定及其在荆江的应用[J]. 水利学报, 2021, 52(4): 409-419.
[14] 李义天. 冲淤平衡状态下床沙质级配初探[J]. 泥沙研究, 1987(1): 82-87.
[15] 秦 毅, 陈 杰, 石 宝, 等. 冲淤平衡状态下悬移质挟沙力级配的分析研究[J]. 西安理工大学学报, 2007, 23(3): 273-276.
[16] 吴伟明, 李义天. 非均匀沙水流挟沙力研究[J]. 泥沙研究, 1993(4): 81-88.
[17] 王士强, 陈 骥, 惠遇甲. 明槽水流的非均匀沙挟沙力研究[J]. 水利学报, 1998, 29(1): 1-9, 17.
[18] WU W, WANG S S Y, JIA Y. Nonuniform Sediment Transport in Alluvial Rivers[J]. Journal of Hydraulic Research, 2000, 38(6): 427-434.
[19] 戴 清, 胡 健, 陈建国, 等. 渭河下游河道非均匀沙输沙能力及输沙特性研究[J]. 泥沙研究, 2008(1): 57-62.
[20] 陈绪坚, 胡春宏. 水流挟沙力的统计理论计算方法及其应用[J]. 水利学报, 2014, 45(10): 1199-1204.
[21] SUN Z, YANG E, XU D, et al. Logarithmic Law for Transport Capacity of Nonuniform Sediment[J]. Journal of Hydraulic Engineering, 2018, 144(3): 04017069.
[22] 贾宝真, 钟德钰. 非均匀悬移质泥沙弥散速度本构方程[J]. 水力发电学报, 2019, 38(3): 1-11.
[23] 乐培九. 关于非均匀沙悬移质不平衡输沙问题[J]. 水道港口, 1996, 17(4): 1-8.
[24] 韩其为. 水量百分数的概念及在非均匀悬移质输沙中的应用[J]. 水科学进展, 2007, 18(5): 633-640.
[25] 韩其为. 泥沙运动统计理论前沿研究成果[J]. 水利学报, 2018, 49(9): 1040-1054.
[26] 韩其为. 非均匀悬移质不平衡输沙[M]. 北京: 科学出版社, 2013.
[27] 方春明, 韩其为, 何明民, 等. 统计理论非均匀沙挟沙能力的计算方法及其验证[J]. 水利学报, 1998, 29(2): 68-71.
[28] 孙昭华, 周炜兴, 周 坤, 等. 江湖水沙输移与长江中下游造床流量的关系[J]. 水利学报, 2021, 52(5): 521-534.
基金
国家自然科学基金长江水科学研究联合基金项目(U2240206)