生态基流是河流生态系统健康稳定的关键,对于水资源缺乏的干旱区内陆河流尤为重要。以昆仑山北麓克里雅河、尼雅河与车尔臣河3条典型季节性内陆河为研究对象,选取1978—2014年流域水文数据,利用QP法、Tennant法、近10 a最枯月平均流量法和Texas法4种水文学方法,计算确定河流生态基流并据此分析其时空分异特征与影响因素。结果表明:Tennant法更适合昆仑山北麓河流生态基流计算。从时间变化来看,3条河生态基流年内最大值均出现在7月份,最小值均出现在1月份;年生态基流最大值均出现在2010年左右,最小值在1980年前后,分别以1.378、0.653、3.066 m3/s·(10 a)-1的速度增加。3条河流生态基流空间分布,春季表现为车尔臣河>克里雅河>尼雅河,夏季和秋季均表现为克里雅河>车尔臣河>尼雅河,且同一河流波动变化明显,不同河流之间变化差异不显著(p>0.05)。影响生态基流年内时空差异的主要因素分别是气温、降水和人类活动,其中以车尔臣河流域气温、降水与生态基流的相关性最强,相关系数r分别为0.876、0.917。考虑生态基流时空分布与流域气候变化特征,综合提出3条河流年内各月生态基流管控目标。研究结果可为昆仑山北麓河流生态保护与水资源管理调度提供参考。
Abstract
Ecological base flow plays a pivotal role in maintaining the health and stability of river ecosystems, especially in inland arid areas that lack sufficient water resources. This study focuses on three representative seasonal inland rivers, namely the Kriya River, Niya River, and Qarqan River, located on the northern slope of the Kunlun Mountains. By analyzing hydrological data from 1978 to 2014, we employed four hydrological methods, including the QP method, Tennant method, the Texas method and others to calculate and determine the ecological base flow values of the three rivers. Furthermore, we investigated their spatial-temporal differentiation characteristics and influencing factors. The results indicate that the Tennant method is more suitable for calculating the ecological base flow in the northern slope of the Kunlun Mountains. In terms of temporal variation, the maximum monthly flow values for all three rivers occurred in July, while the minimum values in January. The interannual maximum flow was observed in near 2010, whereas the minimum value recorded in near 1980,increasing at rates of 1.378 m3/s·(10 a)-1,0.653 m3/s·(10 a)-1,and 3.066 m3/s·(10 a)-1,respectively, for the three rivers. Regarding spatial distribution, the Qarqan River exhibits the highest flow rate in spring, followed by the Kriya River, and then the Niya River. In summer and autumn, the ranking changes to Kriya River,Qarqan River,and Niya River in descending order.Despite evident fluctuations in the same river, the differences in changes between different rivers are not significant (p>0.05). The primary factors influencing the temporal and spatial differences in ecological base flow are temperature, precipitation, and human activities. Among these factors, the Qarqan River Basin demonstrates the strongest correlation between temperature, precipitation, and ecological base flow, with correlation coefficients r=0.876 and r=0.917,respectively.Taking into account the spatial and temporal distribution of ecological base flow and the characteristics of climate change in the basin, we propose comprehensive management and control objectives for each month in a year for the three rivers. The findings can serve as a valuable reference for river ecological restoration, as well as water resources management and allocation on the northern slope of the Kunlun Mountain.
关键词
生态基流 /
时空特征 /
Tennant法 /
管控目标 /
昆仑山北麓
Key words
ecological base flow /
temporal and spatial differentiation /
Tennant method /
objectives of control /
northern slope of Kunlun Mountains
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ARTHINGTON A H, NAIMAN R J, MCCLAIN M E, et al. Preserving the Biodiversity and Ecological Services of Rivers: New Challenges and Research Opportunities[J]. Freshwater Biology, 2010, 55(1): 1-16.
[2] VÖRÖSMARTY C J, MCINTYRE P B, GESSNER M O, et al. Global Threats to Human Water Security and River Biodiversity[J]. Nature, 2010, 467: 555-561.
[3] 陈 昂, 隋 欣, 廖文根, 等. 我国河流生态基流理论研究回顾[J]. 中国水利水电科学研究院学报, 2016, 14(6): 401-411. (CHEN Ang, SUI Xin, LIAO Wen-gen, et al. Review Study on Instream Ecological Base Flow in China[J]. Journal of China Institute of Water Resources and Hydropower Research, 2016, 14(6): 401-411.(in Chinese))
[4] ARMBRUSTER J T.An Infiltration Index Useful in Estimating Low-flow Characteristics of Drainage Basin[J]. Journal Research of US Geological Survey,1976,4: 533-538.
[5] KARAKOYUN Y, YUMURTACI Z, DONMEZ A H. Environmental Flow Assessment for Energy Generation Sustainability Employing Different Hydraulic Evaluation Methods: Cambasi Hydropower Plant Case Study in Turkey[J]. Clean Technologies and Environmental Policy, 2016, 18(2): 583-591.
[6] SISTO N P. Environmental Flows for Rivers and Economic Compensation for Irrigators[J]. Journal of Environmental Management, 2009, 90(2): 1236-1240.
[7] 陈 浩, 徐宗学, 侯昕玥, 等. 考虑海水入侵影响的漳卫新河河口生态基流研究[J]. 水力发电学报, 2019, 38(7): 11-20. (CHEN Hao, XU Zong-xue, HOU Xin-yue, et al. Assessment on Ecological Baseflow in Zhangweixin River Estuary Considering Saltwater Intrusion[J]. Journal of Hydroelectric Engineering, 2019, 38(7): 11-20.(in Chinese))
[8] REISER D W,WESCHE T A,ESTES C.Status of Instream Flow Legislation and Practices in North America[J]. Fisheries,1989,14(2):22-29.
[9] POFF N L,MATTHEWS J H.Environmental Flows in the Anthropocence: Past Progress and Future Prospects[J]. Current Opinion in Environmental Sustainability,2013,5(6):667-675.
[10] 华祖林,董越洋,褚克坚.高度人工化城市河流生态水位和生态流量计算方法[J].水资源保护,2021,37(1):140-144.(HUA Zu-lin,DONG Yue-yang,CHU Ke-jian.Calculation Method of Ecological Water Level and Discharge in Highly Artificial Urban River[J]. Water Resources Protection,2021,37(1):140-144.(in Chinese))
[11] 徐宗学, 武 玮, 于松延. 生态基流研究: 进展与挑战[J]. 水力发电学报, 2016, 35(4): 1-11. (XU Zong-xue, WU Wei, YU Song-yan. Ecological Baseflow: Progress and Challenge[J]. Journal of Hydroelectric Engineering, 2016, 35(4): 1-11.(in Chinese))
[12] 张爱民, 郝天鹏, 周和平, 等. 新疆白杨河流域特征及生态植被需水分析[J]. 生态学报, 2021, 41(5): 1921-1930. (ZHANG Ai-min, HAO Tian-peng, ZHOU He-ping, et al. Analysis on Characteristics of Baiyang River Basin and Water Requirement of Ecological Vegetation in Xinjiang[J]. Acta Ecologica Sinica, 2021, 41(5): 1921-1930.(in Chinese))
[13] 毛炜峄, 玉素甫·阿布都拉, 程 鹏, 等. 中昆仑山北坡诸河一次特大洪水及其成因分析[C]∥中国气象学会2007年年会天气预报预警和影响评估技术分会场论文集. 广州: 中国气象学会, 2007: 2416-2422.(MAO Wei-yi, ABDULLAH Y, CHENG Peng, et al. A Catastrophic Flood in Rivers on the Northern Slope of Middle Kunlun Mountain and Its Causes[C]∥Proceedings of the 2007 Annual Conference of Chinese Meteorological Society: Weather Forecast and Early-warning and Impact Assessment. Guangzhou: Chinese Meteorological Society, 2007: 2416-2422. (in Chinese))
[14] 玄海燕, 罗双华. 我国区域降水量与海拔高度关系的分析[C]∥中国现场统计研究会第十三届学术年会论文集. 北海: 中国现场统计研究会, 2007: 113-116.(XUAN Hai-yan, LUO Shuang-hua. Relationship between Local Precipitation and Altitude in China[C]∥Proceedings of the Thirteenth Annual Academic Meeting of Chinese Association for Applied Statistics. Beihai: Chinese Association for Applied Statistics, 2007: 113-116.(in Chinese))
[15] 阿布都米吉提·阿布力克木, 阿里木江·卡斯木, 艾里西尔·库尔班, 等. 新疆车尔臣河流域水域的宏观变化及其影响和驱动因素[J]. 冰川冻土, 2015, 37(2): 480-492. (ABLEKIM A, KASIMU A, KURBAN A, et al. The Cherchen River Watershed in Xinjiang: Macroscopic Spatiotemporal Variation, Controlling and Driving Effects[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 480-492.(in Chinese))
[16] 王慧杰. 干旱区水资源开发利用对生态用水影响的综合评价[D]. 北京: 清华大学, 2011. (WANG Hui-jie. Impact Assessment of Water Resources Exploitation and Utilization on Ecological Water Use in Arid Area[D]. Beijing: Tsinghua University, 2011. (in Chinese))
[17] 许有鹏, 高蕴珏, 杨 戍. 昆仑山北坡河流水文水资源特征研究[J]. 地理科学, 1994, 14(4): 338-346, 390. (XU You-peng, GAO Yun-yu, YANG Wu. Approach to Water Resource Characteristics of Rivers in North Slope Area of the Kunlun Mountains[J]. Scientia Geographica Sinica, 1994, 14(4): 338-346, 390.(in Chinese))
[18] YANG S,YANG T.Exploration of the Dynamic Water Resource Carrying Capacity of the Keriya River Basin on the Southern Margin of the Taklimakan Desert, China[J]. Regional Sustainability,2021,2(1):73-82.
[19] 胡可可, 何建村, 赵 健, 等. 气候变化背景下尼雅河流域生态基流研究[J].干旱区地理, 2022, 45(5): 1472-1480.(HU Ke-ke,HE Jian-cun,ZHAO Jian,et al. Ecological Base Flow in Niya River Basin under Climate Change[J]. Arid Land Geography,2022,45(5):1472-1480.(in Chinese))
[20] 达 伟,王书峰,沈永平,等.1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土,2022,44(1):46-55.(DA Wei,WANG Shu-feng,SHEN Yong-ping,et al. Hydrological Response to the Climatic Changes in the Qarqan River Basin at the Northern Slope of Kunlun Mountains during 1957—2019[J]. Journal of Glaciology and Geocryology,2022,44(1):46-55.(in Chinese))
[21] SL/Z 712—2014, 河湖生态环境需水计算规范[S]. 北京: 中国水利水电出版社, 2015. (SL/Z 712—2014, Calculation Specification for Water Demand of River and Lake Ecological Environment [S]. Beijing: China Water & Power Press, 2015. (in Chinese))
[22] STANLNAKER C B. The Instream Flow Incremental Methodology: A Primer for IFIM National Ecology Research Center[M]. Fort Collins, Colorado, USA: International Publication,1994.
[23] TENNANT D L. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources[J]. Fisheries, 1976, 1(4): 6-10.
[24] GLEICK P H. Water in Crisis: Paths to Sustainable Water Use[J]. Ecological Applications, 1998, 8(3): 571-579.
[25] MATTHEWS R C, BAO Y. The Texas Method of Preliminary Instream Flow Determination[J]. River, 1991, 2(4):295-308.
[26] 吴喜军, 李怀恩, 董 颖, 等. 基于基流比例法的渭河生态基流计算[J]. 农业工程学报, 2011, 27(10): 154-159. (WU Xi-jun, LI Huai-en, DONG Ying, et al. Calculation of Ecological Basic Flow of Weihe River Based on Basic Flow Ratio Method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 154-159.(in Chinese))
[27] 高玉琴,刘 钺,赵晨程,等.南方季节性缺水河流逐月保证率设定法的改进[J]. 水资源保护,2021,37(2):95-101.(GAO Yu-qin,LIU Yue,ZHAO Chen-cheng,et al. Improvement on Monthly Guarantee Rate Setting Method for Seasonal Water Shortage Rivers in South China[J]. Water Resources Protection,2021,37(2):95-101.(in Chinese))
[28] 李肖杨,朱成刚,马玉其,等.新疆孔雀河流域生态基流与天然植被需水量研究[J]. 干旱区地理,2021,44(2):337-345.(LI Xiao-yang,ZHU Cheng-gang,MA Yu-qi,et al. Ecological Baseflow and Natural Vegetation Water Requirement of Konqi River Basin, Xinjiang[J]. Arid Land Geography,2021,44(2):337-345.(in Chinese))
[29] 于松延, 徐宗学, 武 玮. 基于多种水文学方法估算渭河关中段生态基流[J]. 北京师范大学学报(自然科学版), 2013, 49(增刊1): 175-179. (YU Song-yan, XU Zong-xue, WU Wei. Ecological Baseflow in the Guanzhong Reach of the Wei River Estimated by Using Different Hydrological Methods[J]. Journal of Beijing Normal University (Natural Science), 2013, 49(S1): 175-179.(in Chinese))
[30] 吴秀兰, 张太西, 王 慧, 等. 1961—2017年新疆区域气候变化特征分析[J]. 沙漠与绿洲气象, 2020, 14(4): 27-34. (WU Xiu-lan, ZHANG Tai-xi, WANG Hui, et al. Characteristics of Temperature and Precipitation Change in Xinjiang during 1961—2017[J]. Desert and Oasis Meteorology, 2020, 14(4): 27-34.(in Chinese))
[31] 李凯轩, 李志威, 胡旭跃, 等. 洞庭湖区三口水系生态基流研究[J]. 长江科学院院报, 2021, 38(8): 19-24. (LI Kai-xuan, LI Zhi-wei, HU Xu-yue, et al. Ecological Base Flow of Three Major Outlets Rivers of the Middle Yangtze River into the Dongting Lake Area[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(8): 19-24.(in Chinese))
[32] 赵 芬,庞爱萍,李春晖,等.黄河干流与河口湿地生态需水研究进展[J]. 生态学报,2021,41(15):6289-6301.(ZHAO Fen,PANG Ai-ping,LI Chun-hui, et al. Progress in Ecological Water Requirements in the Mainstream and Estuary Ecosystem of the Yellow River Basin[J]. Acta Ecologica Sinica,2021,41(15):6289-6301.(in Chinese))
[33] 贾 磊,郭鑫宇.考虑生态流量分级约束的跨流域引水与供水优化调度研究[J]. 长江科学院院报,2018,35(4):24-30,36.(JIA Lei,GUO Xin-yu.Model of Multipurpose Trans-basin Water Diversion and Reservoir Ecological Operation Based on Ecological Flow Range[J]. Journal of Yangtze River Scientific Research Institute,2018,35(4):24-30,36.(in Chinese))
[34] 魏 宣, 王 宁, 周明通, 等. 气候变化和人类活动对克里雅河径流变化影响定量研究[J]. 灌溉排水学报, 2022, 41(8): 80-86. (WEI Xuan, WANG Ning, ZHOU Ming-tong, et al. Combined Impact of Climate Change and Human Activities on Runoff in the Kriya River[J]. Journal of Irrigation and Drainage, 2022, 41(8): 80-86.(in Chinese))
[35] 吴 芳, 张新锋, 崔雪锋. 中国水资源利用特征及未来趋势分析[J]. 长江科学院院报, 2017, 34(1): 30-39. (WU Fang, ZHANG Xin-feng, CUI Xue-feng. Characteristics and Future Trends of Water Resources Utilization in China[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(1): 30-39.(in Chinese))
基金
新疆水利科技专项(XSKJ-2022-21);国家自然科学基金项目(41961002)