为从细观角度研究劈裂注浆对富含黏土隧洞的加固效果,依托滇中引水工程伍庄村隧洞进口段,采用离散元软件PFC2D,基于离散元流固耦合理论、平板窄缝流动模型与Fish语言的二次开发,实现了注浆过程中浆液和土体颗粒的相互作用,建立了颗粒流劈裂注浆数值模型。研究了注浆时步、注浆压力、颗粒粒径比及黏结强度对浆液扩散半径及土体孔隙率的影响。结果表明:注浆压力是影响土体加固效果的主控因素,随着注浆压力的增大,浆液扩散半径不断扩大,孔隙率持续增加,与注浆孔距离越远,对孔隙率影响越小,存在最优注浆压力。土体细观参数对注浆后宏观力学特性有较为明显的影响,随颗粒粒径比和黏结强度的增大,浆液扩散半径及孔隙率明显减小。将数值模拟结果与室内模型试验结果对比,发现二者趋势吻合较好,与实际相符,验证了所建立的注浆数值模型的正确性。
Abstract
The aim of this study is to probe into the reinforcement effect of splitting grouting on clay-rich tunnels from a mesoscopic viewpoint. The entrance segment of Wuzhuangcun tunnel of the Central Yunnan Water Diversion Project is taken as a research background. The PFC2D model of splitting grouting is established by simulating the interaction between slurry and soil particles in the process of grouting based on the discrete element fluid-solid coupling theory, the plate narrow slit model and the secondary development of Fish language. The influences of grouting time step, grouting pressure, particle size ratio and cohesive strength on the slurry diffusion radius and soil porosity are studied. Results reveal that grouting pressure is the dominant control factor affecting the soil reinforcement effect. With the increase of grouting pressure, the slurry diffusion radius expands continuously and the porosity increases continuously. A smaller distance from the grouting hole results in a smaller influence on porosity. An optimal grouting pressure exists. Moreover, mesoscopic soil parameters have obvious influence on the macroscopic mechanical properties after grouting. With the increase of particle size ratio and cohesive strength, the slurry diffusion radius and porosity reduce significantly. The simulation results are in well agreement with indoor model test result, which verified the correctness of the simulated model.
关键词
黏土 /
劈裂注浆 /
离散元模拟 /
流固耦合 /
模型试验 /
扩散特性 /
滇中引水工程
Key words
clay /
splitting grouting /
discrete element simulation /
fluid-soild coupling /
model test /
diffusion rule /
Central Yunnan Water Diversion Project
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘 奇,陈卫忠,袁敬强,等.岩溶充填黏土注浆加固试验研究[J].岩石力学与工程学报,2019,38(增刊1):3179-3188.
[2] LI S, LIU R, ZHANG Q, et al. Protection against Water or Mud Inrush in Tunnels by Grouting: a Review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(5): 753-766.
[3] 刘海明,卢昊正,南 敢,等.基于黏度时变性的Herschel-Bulkley流体劈裂注浆扩散特性研究[J].自然灾害学报,2022,31(3):213-221.
[4] TANI M E, STILLE H K. Grout Spread and Injection Period of Silica Solution and Cement Mix in Rock Fractures[J]. Rock Mechanics and Rock Engineering, 2017, 50(9): 2365-2380.
[5] YE X, WANG S, ZHANG S, et al. The Compaction Effect on the Performance of a Compaction-grouted Soil Nail in Sand[J]. Acta Geotechnica, 2020, 15(10): 2983-2995.
[6] NIU J, LI Z, GU W, et al. Experimental Study of Split Grouting Reinforcement Mechanism in Filling Medium and Effect Evaluation[J]. Sensors, 2020, 20(11): 3088.
[7] 程少振,陈铁林,郭玮卿,等.土体劈裂注浆过程的数值模拟及浆脉形态影响因素分析[J].岩土工程学报,2019,41(3):484-491.
[8] 黄生根,徐 松,胡永健.基于颗粒流的桩端后压浆细观机理模拟研究[J].铁道工程学报,2018,35(5):1-6,12.
[9] MENG L, HAN L, ZHU H, et al. Study of the Effects of Compaction and Split Grouting on the Structural Strengthening Characteristics of Weakly Cemented Argillaceous Rock Masses[J]. KSCE Journal of Civil Engineering, 2022, 26(4): 1754-1772.
[10]孙 锋,张顶立,陈铁林,等.土体劈裂注浆过程的细观模拟研究[J].岩土工程学报,2010,32(3):474-480.
[11]耿 萍,卢志楷,丁 梯,等.基于颗粒流的围岩注浆动态过程模拟研究[J].铁道工程学报,2017,34(3):34-40.
[12]秦鹏飞.不良地质体注浆细观力学模拟研究[J].煤炭学报,2020,45(7):2646-2654.
[13]夏洋洋,郝燕洁,杜雪明,等.高聚物定向劈裂注浆动态过程数值模拟[J].中南大学学报(自然科学版),2021,52(12):4464-4474.
[14]周 健,张 刚,孔 戈.渗流的颗粒流细观模拟[J].水利学报,2006(1):28-32.
[15]GB/T 50123—2019,土工试验方法标准[S]. 北京:中国计划出版社,2019.
[16]周 博,汪华斌,赵文锋,等.黏性材料细观与宏观力学参数相关性研究[J].岩土力学,2012,33(10):3171-3175.
[17]李可宇,杨果岳,李良吉,等.基于颗粒流模拟的黏性土宏细观参数相关性分析[J].实验力学,2020,35(6):1147-1156.
[18]袁敬强,陈卫忠,谭贤君,等.软弱地层注浆的细观力学模拟研究[J].岩土力学,2011,32(增刊2):653-659.
基金
云南省重大科技专项计划(202102AF080001-2,202002AF080003);云南省应用基础研究计划项目(202001AT070083);云交科教[2018]20号