白鹤滩水电站地下洞室混凝土浇筑方量巨大,骨料采用玄武岩细骨料+玄武岩粗骨料的组合方案。为保证白鹤滩水电站地下洞室混凝土的耐久性,2017年11月至2021年8月的白鹤滩水电站主体工程施工期间,按季度连续对玄武岩骨料进行取样、跟踪分析,采用多种试验方法综合评价了其潜在碱活性。试验结果表明:白鹤滩水电站施工期玄武岩骨料中含有杏仁玄武岩、角砾熔岩等多种岩石,部分岩石中存有少量微晶-隐晶石英等活性矿物成分;SEM及EDS微观分析表明,含活性成分玄武岩骨料仅在高温和高碱的条件下才会产生危害性膨胀的碱-骨料反应;使用碱含量<0.60%的低热42.5硅酸盐水泥且掺入≥20%粉煤灰作掺合料的条件下,玄武岩骨料用于地下洞室混凝土工程不会产生危害性的碱-骨料反应。
Abstract
The underground cavern of Baihetan Hydropower Station requires a significant amount of concrete, with a combination of basalt artificial sand and basalt coarse aggregate being adopted for the concrete aggregates. To ensure the durability of the concrete in the underground cavern, the alkali reactivity of the basalt aggregate was monitored quarterly from November 2017 to August 2021 during the construction of the Baihetan Hydropower Station. Various test methods, including the petrographic method, mortar bar rapid method, and concrete prism method, were employed to evaluate the potential alkali reactivity. The experimental findings revealed the presence of other minerals such as amygdaloidal basalt and breccia lava in the basalt aggregates. Additionally, a small amount of active minerals like microcrystalline and cryptocrystalline quartz was identified. SEM and EDS results indicated that these active minerals would only induce harmful alkali aggregate reactions under high temperature and high alkali conditions. Utilizing low-heat Portland cement with an alkali content of less than 0.60% and incorporating a minimum of 20% fly ash in the concrete mixture effectively mitigated the risk of harmful alkali aggregate reactions associated with basalt aggregate.
关键词
白鹤滩水电站 /
地下洞室混凝土 /
玄武岩 /
骨料 /
碱活性
Key words
Baihetan Hydropower Station /
underground cavern concrete /
basalt /
aggregates /
alkali reactivity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] STANTON T E. Expansion of Concrete through Reaction between Cement and Aggregate[J]. Transactions of the American Society of Civil Engineers,1942,107(1):54-84.
[2] 杨华全, 李鹏翔, 李 珍. 混凝土碱骨料反应[M]. 北京: 中国水利水电出版社, 2010.[3] CAVALCANTI A J C T. Alkali-Aggregate Reaction at Moxoto Dam, Brazil[C]∥Proceedings of the 7th International Conference on Alkali-Aggregate Reaction in Concrete.Ottawa, Canada: Publication of Noyes Publication, 1987: 168-172.
[4] 马赛尔·阿罗德.法国硅碱骨料中碱骨料反应的最新研究[J].中国三峡工程建设,1998 (5):60-63.
[5] 唐明述. 碱集料反应破坏的典型事例[J]. 中国建材, 2000, 49(5): 57-60.
[6] 石 妍, 彭尚仕, 董 芸, 等. 骨料品种对等强度水工混凝土的性能影响研究[J]. 长江科学院院报, 2013, 30(11): 83-85, 90.
[7] 杨华全, 李鹏翔, 陈 霞. 水工混凝土碱-骨料反应研究综述[J]. 长江科学院院报, 2014, 31(10): 58-62.
[8] 李 珍, 金 宇, 马保国. 玄武岩骨料碱活性试验研究[J]. 长江科学院院报, 2007, 24(2): 43-45.
[9] 董 芸, 周泽聪, 李鹏翔, 等. 锦屏一级大坝混凝土骨料碱活性抑制措施的长期有效性研究[J]. 长江科学院院报, 2022, 39(5): 140-144, 152.
[10]DL/T 5298—2013,水工混凝土抑制碱-骨料反应技术规范[S]. 北京: 中国电力出版社, 2014.
[11]DL/T 5241—2010,水工混凝土耐久性技术规范[S]. 北京: 中国电力出版社, 2010.
[12]DL/T 5151—2014,水工混凝土砂石骨料试验规程[S]. 北京: 中国电力出版社, 2014.