基于Monte-Carlo原理及Fuller级配理论,依据PYTHON算法及COMSOL软件建立由天然骨料、老界面区、老砂浆、新界面区及新砂浆组成的再生混凝土三维球形细观模型,模拟计算了不同骨料体积分数、老砂浆扩散系数及老砂浆厚度的再生混凝土内氯离子扩散过程,对比研究了再生混凝土抗氯离子侵蚀影响规律。研究表明:以随机理论建立的再生混凝土三维球形随机骨料模型接近真实再生混凝土细观结构,满足一般工程需要;基于该模型的氯离子细观数值模拟结果同试验结果吻合;再生骨料体积分数从10%增至30%、50%时,再生混凝土表观扩散系数分别增加了6.56%和19.43%;老砂浆扩散系数增加4倍,表观氯离子扩散系数增加19.28%;老砂浆厚度增加2倍,表观氯离子扩散系数增加8.1%,增加老砂浆的厚度和扩散系数会弱化再生混凝土抗氯离子侵蚀的能力。
Abstract
Using PYTHON algorithm and COMSOL software , we have developed a three-dimensional spherical mesoscopic model for recycled aggregate concrete (RAC) based on the Monte-Carlo principle and Fuller gradation theory. The model encompasses natural aggregate, old interface transition zones (OITZ), old mortar, new interface transition zones (NITZ), and new mortar. By simulating and calculating the chloride diffusion process in RAC with varying aggregate volume fractions, old mortar diffusion coefficients, and old mortar thickness, we have examined and compared the chloride resistance of RAC. Our research demonstrates that the three-dimensional spherical random aggregate model of RAC, established through random theory, closely resembles the actual mesostructure of RAC and fulfills the requirements of general engineering. Moreover, the mesoscopic numerical simulation results for chloride diffusion based on this model are consistent with experimental findings. Specifically, when the recycled aggregate content increases from 10% to 30% and 50%, the apparent diffusion coefficients of the recycled concrete increase by 6.56% and 19.43% respectively. Additionally, the diffusion coefficient of the old mortar is quadrupled, resulting in a 19.28% increase in the apparent chloride diffusion coefficient. Furthermore, the old mortar thickness doubles, leading to an 8.1% increase in the apparent chloride diffusion coefficient. Overall, the chloride resistance of RAC weakens as the thickness and diffusion coefficient of the old mortar increase.
关键词
再生混凝土 /
随机球形骨料 /
氯离子扩散 /
细观性能 /
数值模拟
Key words
recycled aggregate concrete /
random spherical aggregate /
chloride diffusion /
mesoscopic performance /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 肖建庄, 郝潞岑, 曹万智, 等. 再生混凝土导热性能影响因素及研究进展[J]. 同济大学学报(自然科学版), 2022, 50(3): 378-388.
[2] 董 伟, 肖 阳, 苏 英. 盐冻作用下风积沙混凝土中氯离子扩散研究[J]. 长江科学院院报, 2021, 38(2): 125-130.
[3] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 106-111.
[4] 鲍玖文, 于子浩, 张 鹏, 等. 再生粗骨料混凝土及其构件抗冻性能研究进展[J]. 建筑结构学报, 2022, 43(4): 142-157.
[5] 徐福卫, 田 斌, 徐 港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 122-128.
[6] YU Y, LIN L. Modeling and Predicting Chloride Diffusion in Recycled Aggregate Concrete[J]. Construction and Building Materials, 2020, 264: 120620.
[7] 胡 志, 毛丽璇, 刘清风. 再生骨料混凝土抗氯离子侵蚀的多相数值研究[J]. 硅酸盐通报, 2020, 39(8): 2425-2432.
[8] JIN L,YU H,WANG Z,et al.Effect of Crack and Damaged Zone on Chloride Penetration in Recycled Aggregate Concrete: a Seven-Phase Mesoscale Numerical Method[J]. Construction and Building Materials,2021,291:123383.
[9] 鞠学莉, 吴林键, 刘明维, 等. 考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J]. 材料导报, 2021, 35(24): 24075-24080, 24087.
[10] 金立兵, 余化龙, 王振清, 等. 再生混凝土抗氯离子渗透的五相细观数值模拟[J]. 郑州大学学报(工学版), 2022, 43(1): 83-89.
[11] XIAO J, LI W, SUN Z, et al. Properties of Interfacial Transition Zones in Recycled Aggregate Concrete Tested by Nanoindentation[J]. Cement and Concrete Composites, 2013, 37: 276-292.
[12] 姚泽良, 崔婷婷, 段东旭, 等. 基于Python的再生混凝土细观性能模拟方法研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(2): 167-172.
[13] SUN J, XIE J, ZHOU Y, et al. A 3D Three-phase Meso-scale Model for Simulation of Chloride Diffusion in Concrete Based on ANSYS[J]. International Journal of Mechanical Sciences, 2022, 219: 107127.
[14] ZHENG J, ZHOU X. Analytical Solution for the Chloride Diffusivity of Hardened Cement Paste[J]. Journal of Materials in Civil Engineering, 2008, 20(5): 384-391.
[15] 应敬伟. 再生混凝土氯离子扩散规律与基本特征[D].上海: 同济大学,2013.
[16] XIAO J, YING J, SHEN L. FEM Simulation of Chloride Diffusion in Modeled Recycled Aggregate Concrete[J]. Construction and Building Materials, 2012, 29: 12-23.
基金
国家自然科学基金项目(51208422);陕西省教育厅资助项目(20JS092)