针对长江中下游流域洪涝灾害频发的现状,基于泰森多边形法和河网密度法分别模拟流域降雨和构建子集水区,采用SCS模型和局部等体积法模拟不同降雨重现期下的淹没水深和范围,并以市为单位进行淹没风险的具体分析。结果表明长江中下游流域产流的高值中心集中在水体和城市用地区域,受淹区主要集中在江汉、两湖平原和长江三角洲等低洼区域;随着降雨重现期的增长,遭遇积水的淹没范围越广,陆域的洪涝程度加剧。降雨量与淹没面积近似呈线性关系,当降雨量<80 mm/d,降雨量每增加1 mm,流域的淹没范围增加947 km2;当降雨量>80 mm/d时,淹没范围增加644 km2。在以市为单位的具体分析中,武汉市、南京市、南昌市以及孝感市的淹没范围和风险均较高,因而需重点关注与防御。
Abstract
Given the frequent occurrence of flood disasters in the middle and lower reaches of the Yangtze River Basin, this study aims to assess the inundation risk in specific cities by simulating basin rainfall and sub-catchment areas using the Tyson polygon method and river network density method. The SCS (Soil Conservation Service) model and local equal volume method are employed to simulate the submerged depth and range under different rainfall return periods. The results highlight that the primary flooded areas in the middle and lower reaches of the Yangtze River are concentrated in the low-lying regions of the Jianghan Plain, the Dongting Lake and Poyang Lake Plain, as well as the Yangtze River Delta. With the increase in the return period of rainfall, the area affected by flooding and the severity of land flooding intensifies. There is an approximate linear relationship between the amount of rainfall and the area of inundation. For each 1 mm increase in precipitation, the submerged area expands by 947 km2 when the precipitation is below 80 mm/d and by 644 km2 when it exceeds 80 mm/d. A specific analysis conducted at city level reveals that Wuhan, Nanjing, Nanchang, and Xiaogan face high risks and large scopes of inundation. Consequently, these cities require heightened attention and defense measures.
关键词
长江中下游流域 /
SCS模型 /
局部等体积法 /
淹没分析
Key words
middle and lower reaches of the Yangtze River Basin /
SCS model /
local equal volume method /
inundation analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢志清, 杜 银, 曾 燕, 等. 江淮流域年极端降水事件分类特征及其致洪风险[J]. 中国科学: 地球科学, 2018, 48(9): 1153-1168.
[2] 李 莹, 高 歌, 宋连春. IPCC第五次评估报告对气候变化风险及风险管理的新认知[J]. 气候变化研究进展, 2014, 10(4): 260-267.
[3] 张 会, 张继权, 韩俊山. 基于GIS技术的洪涝灾害风险评估与区划研究: 以辽河中下游地区为例[J]. 自然灾害学报, 2005, 14(6): 141-146.
[4] ADRIANTO L, MATSUDA Y. Developing Economic Vulnerability Indices of Environmental Disasters in Small Island Regions[J]. Environmental Impact Assessment Review, 2002, 22(4): 393-414.
[5] 秦年秀, 姜 彤. 基于GIS的长江中下游地区洪灾风险分区及评价[J]. 自然灾害学报, 2005, 14(5): 1-7.
[6] 张 菡,郭 翔,王锐婷,等.四川省暴雨洪涝灾害风险区划研究[J].中国农学通报,2013,29(26):165-171.
[7] SAHU R K,MISHRA S K,ELODHO.A Modification to the Initial Abstraction in the Existing SCS-CN Methodology Incorporating Storm Duration and Antecedent Rainfall[J]. Recent Advances in Water Resources Development and Management, 2005:697-704.
[8] 徐刘凯, 王全金, 向速林. 应用SCS模型模拟清丰水流域产汇流量[J]. 华东交通大学学报, 2011, 28(4): 84-88.
[9] 甘衍军, 李 兰, 杨梦斐. SCS模型在无资料地区产流计算中的应用[J]. 人民黄河, 2010, 32(5): 30-31.
[10] 王倩雯, 曾 坚, 辛儒鸿. 基于GIS多准则评价与BP神经网络的暴雨洪涝灾害风险辨识: 以闽三角地区为例[J]. 灾害学, 2021, 36(1): 192-200.
[11] 陈 思. 基于SCS和GIS的城市内涝过程模拟及风险评估[D]. 武汉: 长江科学院, 2019.
[12] 徐 晶, 林 建, 姚学祥, 等. 七大江河流域面雨量计算方法及应用[J]. 气象, 2001, 27(11): 13-16, 51.
[13] 方慈安, 潘志祥, 叶成志, 等. 几种流域面雨量计算方法的比较[J]. 气象, 2003, 29(7): 23-26, 42.
[14] 陈光舟, 张晓红. 淮河流域面雨量计算方法的比较分析[J]. 安徽农业科学, 2009, 37(24): 11637-11640.
[15] MATSUURA T, ANIYA M. Automated Segmentation of Hillslope Profiles across Ridges and Valleys Using a Digital Elevation Model[J]. Geomorphology, 2012, 177/178: 167-177.
[16] O'CALLAGHAN J F, MARK D M. The Extraction of Drainage Networks from Digital Elevation Data[J]. Computer Vision, Graphics, and Image Processing, 1984, 28(3): 323-344.
[17] 李照会, 郭 良, 刘荣华, 等. 基于DEM数字河网提取时集水面积阈值与河源密度关系的研究[J]. 地球信息科学学报, 2018, 20(9): 1244-1251.
[18] 张建勋, 汤 雷, 谢 桃, 等. 数字河网提取时集水面积阈值的确定[J]. 水利水电技术, 2016, 47(11): 1-4.
[19] 张 辰, 吕永鹏, 陈 嫣. 《城镇内涝防治技术规范》解读[J]. 给水排水, 2017, 53(8): 55-59.
[20] 《暴雨灾害等级》等35项气象国家标准发布[J]. 中国质量与标准导报, 2017(6): 14-15.
[21] 宋英华, 张 哲, 方丹辉. 城市洪涝下承灾体暴露性及行人失稳风险分析[J]. 中国安全科学学报, 2020, 30(10): 105-111.
基金
国家重点研发计划课题(2021YFC3001002);国家自然科学基金面上项目(71974052);中央级公益性科研院所基本科研业务费项目(CKSF2019478)