铜矿尾矿取代部分水泥对混凝土性能的影响

闫海峰, 赵更歧

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (10) : 160-166.

PDF(5252 KB)
PDF(5252 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (10) : 160-166. DOI: 10.11988/ckyyb.20220537
水工结构与材料

铜矿尾矿取代部分水泥对混凝土性能的影响

  • 闫海峰1, 赵更歧2
作者信息 +

Effect of Copper Mine Tailings Replacing Part of Cement on Concrete Performance

  • YAN Hai-feng1, ZHAO Geng-qi2
Author information +
文章历史 +

摘要

矿物加工过程产生的尾矿是主要的全球性环境问题之一。这些尾矿在环境中积累,会对周边地区造成重金属污染。为探讨尾矿在混凝土中的再利用,以铜矿尾矿部分替代水泥应用于混凝土的制备中,对制备的混凝土试样进行抗压强度、抗氯离子渗透性能、固体废弃物毒性浸出(TCLP)和X射线衍射(XRD)测试。结果表明:试样抗压强度随铜矿尾矿置换率的增加而降低,且早期抗压强度损失较大。龄期为28 d时,与普通混凝土相比,铜矿尾矿置换率10%~40%的试样抗氯离子渗透能力提高,而置换率50%~60%时降低,当龄期增加到90 d时,含铜矿尾矿试样的抗氯离子渗透能力均提高。金属通过参与水泥反应,以金属氢氧化物的形式沉淀或存在于水泥晶体中进一步稳定,所有含铜矿尾矿试样中重金属的浸出质量浓度均低于标准限值。

Abstract

Tailings, a byproduct of mineral processing, pose a significant global environmental issue. These waste materials accumulate and contaminate the surrounding areas with heavy metals. To explore the possibility of reusing tailings in concrete, we selected copper mine tailings as a partial substitute for cement in concrete preparation, and performed tests on concrete samples to assess the compressive strength, resistance to chloride ion penetration, Toxicity Characteristic Leaching Procedure (TCLP), and X-ray diffraction (XRD). The findings revealed a substantial loss of early compressive strength, and also a decline of compressive strength with higher replacement rates of copper tailings. At the age of 28 days, compared to ordinary concrete, samples containing 10%-40% copper mine tailings exhibited improved resistance to chloride ion penetration, whereas those with 50%-60% copper mine tailings displayed a decrease. However, at the age of 90 days, the resistance to chloride ion penetration of all tailings samples improved. This improvement can be attributed to the participation of copper mine tailings in cement reactions, resulting in the stabilization of metals through metal hydroxide precipitation or their presence within cement crystals. Moreover, the leaching rate of heavy metals in all copper mine tailings samples was within standard limit.

关键词

铜矿尾矿 / 抗压强度 / 氯离子渗透性 / TCLP / XRD

Key words

copper mine tailings / compressive strength / chloride ion penetration / TCLP / XRD

引用本文

导出引用
闫海峰, 赵更歧. 铜矿尾矿取代部分水泥对混凝土性能的影响[J]. 长江科学院院报. 2023, 40(10): 160-166 https://doi.org/10.11988/ckyyb.20220537
YAN Hai-feng, ZHAO Geng-qi. Effect of Copper Mine Tailings Replacing Part of Cement on Concrete Performance[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(10): 160-166 https://doi.org/10.11988/ckyyb.20220537
中图分类号: TD926    TU528   

参考文献

[1] 张 婷,谭 凡,杨 哲.尾矿粉土动力变形特性试验研究[J]. 长江科学院院报,2020,37(12):146-151.
[2] WANG F, WANG H, AL-TABBAA A. Leachability and Heavy Metal Speciation of 17-Year Old Stabilised/Solidified Contaminated Site Soils[J]. Journal of Hazardous Materials, 2014, 278: 144-151.
[3] 张利阳, 易 富, 李俊元, 等. 土工织物加筋尾矿砂界面力学特性试验研究[J]. 长江科学院院报, 2020, 37(5): 145-150, 156.
[4] 许亚丽, 陈霏云, 巫秋萍, 等. 纳米CeO2对铅锌尾矿中重金属离子溶出特性影响的研究[J]. 功能材料, 2017, 48(2): 2135-2139.
[5] 段龙飞, 刘赫然, 房泽志, 等. 尾矿制备气泡混合轻质土的力学与抗冻性能研究[J]. 硅酸盐通报, 2022, 41(2): 678-684.
[6] GHAZI A B, JAMSHIDI-ZANJANI A, NEJATI H. Clinkerisation of Copper Tailings to Replace Portland Cement in Concrete Construction[J]. Journal of Building Engineering, 2022, 51: 104275.
[7] 张永康, 冯乃琦, 张 耀, 等. 某铜铅锌多金属矿区土壤重金属污染评价[J]. 有色金属(冶炼部分), 2021(9): 97-103.
[8] 杨震樱, 周长顺. 含玻璃粉超高性能混凝土力学性能及微观结构研究[J]. 硅酸盐通报, 2021, 40(12): 3956-3963.
[9] THOMAS B S, DAMARE A, GUPTA R C. Strength and Durability Characteristics of Copper Tailing Concrete[J]. Construction and Building Materials, 2013, 48: 894-900.
[10] MO K H, ALENGARAM U J, JUMAAT M Z, et al. Green Concrete Partially Comprised of Farming Waste Residues: a Review[J]. Journal of Cleaner Production, 2016, 117: 122-138.
[11] ESMAEILI J, ASLANI H, ONUAGULUCHI O. Reuse Potentials of Copper Mine Tailings in Mortar and Concrete Composites[J]. Journal of Materials in Civil Engineering, 2020, 32(5): 4020084.
[12] AHMARI S, ZHANG L. Production of Eco-Friendly Bricks from Copper Mine Tailings through Geopolymerization[J]. Construction and Building Materials, 2012, 29: 323-331.
[13] FANG Y, GU Y, KANG Q, et al. Utilization of Copper Tailing for Autoclaved Sand-Lime Brick[J]. Construction and Building Materials, 2011, 25(2): 867-872.
[14] ZHANG J, DENG H, TAHERI A, et al. Effects of Superplasticizer on the Hydration, Consistency, and Strength Development of Cemented Paste Backfill[J]. Minerals, 2018, 8(9): 381.
[15] 谢红波, 吴春丽, 陈 哲, 等. 锡尾矿制备水泥砂浆的研究与应用[J]. 混凝土与水泥制品, 2020(4): 73-76.
[16] 孙旭东, 刘晓敏, 龚 裕, 等. 黄金尾矿建材化利用的研究现状及展望[J]. 金属矿山, 2020(3): 12-22.
[17] 申艳军, 白志鹏, 郝建帅, 等. 尾矿制备混凝土研究进展与利用现状分析[J]. 硅酸盐通报, 2021, 40(3): 845-857, 876.
[18] CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of Heavy Metal in Cement-Based Solidification/Stabilisation: A Review[J]. Waste Management, 2009, 29(1): 390-403.
[19] FAN C,WANG B,AI H,et al. A Comparative Study on Solidification/Stabilization Characteristics of Coal Fly Ash-Based Geopolymer and Portland Cement on Heavy Metals in MSWI Fly Ash[J]. Journal of Cleaner Production, 2021, 319: 128790.

基金

国家自然科学基金项目(51408556)

PDF(5252 KB)

Accesses

Citation

Detail

段落导航
相关文章

/