针对隧道穿越突出煤层掌子面前方预留安全岩柱极易发生失稳破坏,导致煤与瓦斯突出的重难点问题,基于突变理论分析,综合运用Polynomial分布函数和二分法,提出了一种判别隧道穿越突出煤层预留安全岩柱失稳的分析方法。根据总势能原理,建立岩柱失稳尖点突变模型,推导出岩柱失稳力学判据;结合围岩塑性屈服区体积突变判据,建立岩柱稳定性预测模型,得到岩柱稳定性判别式,并依托工程实例验证分析。结果表明:隧道穿越突出煤层预留安全岩柱稳定性与岩柱的弹性模量E、厚度L、垂直地应力N、开挖面等效高度H密切相关;基于屈服体积突变判据建立的岩柱稳定性预测模型和失稳力学判据合理可行;岩柱稳定性判别结果与现场施工情况一致,验证了所提出的预测方法与失稳判据的合理性及准确性,具有工程实用价值。
Abstract
The instability and failure of reserved safety rock pillars in tunnels crossing through outburst coal seam faces often lead to coal and gas outbursts. Based on catastrophe theory, we propose an analytical method for assessing the stability of reserved safety rock pillars in such tunnels by using Polynomial distribution functions and dichotomy in a comprehensive manner. By applying the principle of total potential energy, we establish a cusp catastrophe model to represent rock pillar instability, from which a mechanical criterion for rock pillar instability is derived. To further account for the volume catastrophe criterion of the plastic yield zone of surrounding rock, we establish a predictive model for rock pillar stability and obtain a discriminant for assessing rock pillar stability. Engineering examples are employed to verify and analyze the proposed method. Results demonstrate that the stability of reserved safety rock pillars in gas tunnels crossing coal seam is closely correlated with elastic modulus E, thickness L, vertical in-situ stress N, and equivalent height H of tunnel excavation face. The predictive model based on the yield volume catastrophe criterion, as well as the mechanics criterion for stability and instability, exhibits reasonable and feasible outcomes. The discriminant results for rock pillar stability align with the actual on-site conditions, thereby validating the rationality and accuracy of our proposed prediction method and criteria.
关键词
穿煤瓦斯隧道 /
岩柱失稳 /
突变理论 /
预测模型 /
突变判据
Key words
gas tunnel crossing coal seam /
rock pillar instability /
catastrophe theory /
prediction model /
catastrophe criterion
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢全敏, 晏理想, 周圣国, 等. 圭嘎拉隧道石门揭煤岩柱安全厚度及动力特性[J]. 中国安全科学学报, 2021, 31(7): 56-62.
[2] 祝云华,刘新荣,黄 明,等.深埋隧道开挖围岩失稳突变模型研究[J]. 岩土力学,2009,30(3):805-809.
[3] 江 新, 罗东立, 李 炜, 等. 水利工程高危作业突发事件演化机理尖点突变模型研究[J]. 长江科学院院报, 2020, 37(7): 75-81.
[4] ZHUJ Q, LI T Z. Catastrophe Theory-Based Risk Evaluation Model for Water and Mud Inrush and Its Application in Karst Tunnels[J]. Journal of Central South University, 2020, 27(5): 1587-1598.
[5] 陈 舞, 岳克栋, 王 浩, 等. 基于突变理论的隧道洞口浅埋段软弱围岩失稳分析方法[J]. 中国铁道科学, 2021, 42(4): 69-77.
[6] 左清军, 吴 立, 陆中玏, 等. 浅埋偏压隧道洞口段软弱围岩失稳突变理论分析[J]. 岩土力学, 2015, 36(增刊2): 424-430.
[7] 宋瑞刚, 张顶立, 文 明. 穿越断层破碎带深埋隧道围岩失稳的突变理论分析[J]. 土木工程学报, 2015, 48(增刊1): 289-292.
[8] 王心飞, 王文广, 刘新荣, 等. 隧道围岩失稳的突变理论分析[J]. 地下空间与工程学报, 2008, 4(3): 425-430.
[9] 闫长斌, 徐国元. 基于突变理论深埋硬岩隧道的失稳分析[J]. 工程地质学报, 2006, 14(4): 508-512.
[10] QIAO C, GUO Y H, LI C H. Study on Rock Burst Prediction of Deep Buried Tunnel Based on Cusp Catastrophe Theory[J]. Geotechnical and Geological Engineering, 2021, 39(2): 1101-1115.
[11] 李常茂, 薛晓辉, 刘盛辉. 基于尖点突变理论及Spearman秩次检验的基坑稳定性分析[J]. 长江科学院院报, 2018, 35(9): 98-102, 108.
[12] 何 平, 赵子都. 突变理论及其应用[M]. 大连: 大连理工大学出版社, 1989.
[13] 吴大勇. 小寨山隧道洞口段塌方成因分析及变形预测[J]. 长江科学院院报, 2020, 37(9): 79-86, 95.
[14] 王迎超, 尚岳全, 严细水, 等. 降雨作用下浅埋隧道松散围岩塌方机制[J]. 哈尔滨工业大学学报, 2012, 44(2): 142-148.
[15] 陈先国. 隧道结构失稳及判据研究[D]. 成都: 西南交通大学, 2002.
[16] 陈凌云. 公路穿煤隧道揭煤施工过程中岩柱稳定性分析[D]. 重庆: 重庆大学, 2009.
[17] 姜德义, 任 松, 刘新荣, 等. 岩盐溶腔顶板稳定性突变理论分析[J]. 岩土力学, 2005, 26(7): 1099-1103.
[18] 陈应天. 突变理论在力学中的应用[J]. 力学与实践, 1979, 1(3): 9-14.
[19] 察美峰, 孔广亚, 贾立宏. 岩体工程系统失稳的能量突变判断准则及其应用[J]. 北京科技大学学报, 1997, 19(4): 325-328.
[20] 林明才, 蒋雅君, 杨其新, 等. 基于隧道断面相对变形率判定围岩稳定性的研究[J]. 地下空间与工程学报, 2021, 17(3): 872-882, 952.
[21] 谭云龙. 基于突变理论的地下工程围岩稳定极限位移确定方法[D]. 北京: 北京交通大学, 2015.
[22] 李 栋, 卢义玉, 荣 耀, 等. 基于定向水力压裂增透的大断面瓦斯隧道快速揭煤技术[J]. 岩土力学, 2019, 40(1): 363-369, 378.
基金
国家自然科学基金项目(51974146,52174078)