长江科学院院报 ›› 2024, Vol. 41 ›› Issue (5): 162-170.DOI: 10.11988/ckyyb.20221651

• 岩土工程 • 上一篇    下一篇

侧部承压溶洞与深埋隧道间隔水岩体安全厚度研究

乔栋磊1, 李文杰1, 安艳军2, 梁斌1   

  1. 1.河南科技大学 土木建筑学院,河南 洛阳 471000;
    2.中铁十五局集团第五工程有限公司,天津 300133
  • 收稿日期:2022-12-07 修回日期:2023-04-14 出版日期:2024-05-01 发布日期:2024-05-07
  • 通讯作者: 梁 斌(1963-),男,河南洛阳人,教授,博士,博士生导师,主要从事隧道与地下工程方面的工作。E-mail:liangbin4231@163.com
  • 作者简介:乔栋磊(1998-),男,河南郑州人,硕士研究生,研究方向为隧道与地下工程。E-mail:2033920005@qq.com
  • 基金资助:
    国家自然科学基金资助项目(U1604135);中铁十五局集团有限公司A类科研课题(2019A01);河南省科技厅产学研合作项目(2015HNCXY011)

Safe Thickness of Water-proof Rock Mass between Side Karst Cave with Pressurized Water and Deep-buried Tunnel

QIAO Dong-lei1, LI Wen-jie1, AN Yan-jun2, LIANG Bin1   

  1. 1. School of Civil Engineering and Architecture,Henan University of Science and Technology,Luoyang 471000,China;
    2. The Fifth Engineering Group Corporation of China Railway 15th Construction Bureau, Tianjin 300133, China
  • Received:2022-12-07 Revised:2023-04-14 Published:2024-05-01 Online:2024-05-07

摘要: 为保证深埋隧道安全通过侧部高压富水溶洞区段,在隧道突水发生机制分析与隔水岩体最小安全厚度划分的基础上,结合突变理论、鲁宾涅特方程及相关工程经验对隧道边墙岩体安全厚度进行研究,导出最小安全厚度计算公式,建立突水判据,分析相关影响因素对隧道边墙隔水岩体最小安全厚度的影响规律。结果表明:隔水岩体最小安全厚度Hmin与围岩力学参数弹性模量E、内摩擦角φ呈正相关,与溶洞水压力qw、岩梁跨度L及隧道埋深h呈负相关;各因素对Hmin影响程度由大到小依次为hφELqw,其中hφ影响程度相近,E在超过3 GPa的情况下Hmin变化趋于平缓,E的影响程度与L相近;结合有限元模拟结果和工程实例分析,验证了Hmin理论计算公式及突水判据的准确性与可行性,对相关工程建设具有指导意义。

关键词: 深埋岩溶隧道, 富水溶洞, 最小安全厚度, 突变理论, 突水判据

Abstract: To ensure the safe passage of deep-buried tunnels through sections characterized by high-pressure water-rich karst caves, we investigated into the water inrush mechanism of the tunnel and determined the minimum safe thickness of waterproof rock mass. Based on the catastrophe theory, the Rubinett equation, and engineering experiences, we derived a calculation formula for the minimum safe thickness and established a water inrush criterion. We also scrutinized the influence of pertinent factors on the minimum safe thickness of the tunnel sidewall’s waterproof rock mass. Results indicate a positive correlation between the minimum safe thickness of the waterproof rock mass (Hmin) and the mechanical parameters of surrounding rock, including elastic modulus (E) and internal friction angle (φ), while a negative correlation with the water pressure within the karst cave (qw), the span of the rock beam (L), and the burial depth of tunnel (h). The influence of each factor on Hmin ranks in an order of h, φ, E, L, and qw from greatest to least, with h and φ exhibiting similar degrees of influence. Moreover, when E exceeds 3 GPa, the change in Hmin tends to be stable, akin to the influence of L. Finite element simulations and empirical examples align with theoretical calculations, confirming the accuracy and applicability of the derived Hmin theoretical calculation formula and the water inrush criterion. This synthesis of theoretical and empirical evidence offers guidance for relevant engineering endeavors.

Key words: deep-buried karst tunnel, water-rich karst cave, minimum safe thickness, catastrophe theory, criterion of water inrush

中图分类号: