为了研究废旧轮胎加筋对土体强度以及边坡稳定性的影响,采用室内试验,首先进行固结排水剪切三轴试验,研究了废旧轮胎加筋素砂土的应力-应变关系和土体抗剪强度指标变化规律;其次进行路堤模型试验,对比分析了土工格室单一加筋、废旧轮胎-土工格室复合加筋2种加筋形式对路堤边坡稳定性的影响效果差异。结果表明:轮胎加筋明显提高了土体抗剪性能,并且轮胎加筋层数越多,试样抵抗变形能力越好,强度越大;废旧轮胎-土工格室复合加筋优于土工格室单一加筋效果,能显著减少路基边坡沉降、侧向位移和附加应力峰值,有效改善路堤边坡稳定性。最后讨论了轮胎加筋与土工格室加筋机理的异同。试验研究结果为废旧轮胎加筋土应用于岩土工程的边坡稳定处理提供了理论基础。
Abstract
In this paper, the effect of waste tire reinforcement on soil strength and slope stability is studied by laboratory tests. First of all, the stress-strain relationship and shear strength index of plain sand reinforced by waste tire were studied by consolidation drainage shear triaxial test. Furthermore, the effects of single reinforcement of geocell and composite reinforcement of waste tire and geocell on the stability of embankment slope are compared and analyzed via embankment model test. Results demonstrate that waste tire reinforcement improves the shear resistance of soil obviously, and the more layers of tire reinforcement, the better the deformation resistance and the greater the strength of specimens; the embankment model test shows that composite reinforcement of waste tire and geocell is prior to single reinforcement of geocell as the former significantly reduces the settlement, lateral displacement and additional peak stress of embankment and effectively improves the stability of embankment slope. In addition, the similarities and differences between the mechanism of tire reinforcement and geocell reinforcement are discussed.
关键词
废旧轮胎加筋土 /
素砂土 /
土工格室 /
路堤边坡稳定性 /
三轴试验 /
模型试验
Key words
waste tire reinforced soil /
plain sand /
geocell /
embankment stability /
triaxial test /
model test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SOUDE M, CHEVALIER B, GREDIAC M, et al. Experimental and Numerical Investigation of the Response of Geocell Reinforced Walls to Horizontal Localized Impact[J]. Geotextile and Geomembranes, 2013, 39: 39-50.
[2] 魏 静,许兆义,包黎明,等.青藏铁路多年冻土区土工格室护坡试验研究[J].岩石力学与工程学报,2006,25(增刊1):3168-3173.
[3] KHEDKAR M S, MANDAL J N. Behaviour of Cellular Reinforced Sand Under Triaxial Loading Conditions[J]. Geotechnical & Geological Engineering, 2009, 27(5): 645-658.
[4] BISWAS A, KRISHNA A M, DASH S K. Influence of Subgrade Strength on the Performance of Geocell-reinforced Foundation Systems[J].Geosynthetics International, 2013, 20(6): 376-388.
[5] 张达德,张家豪,简大为,等.土工格室于砂土之承载能力及动态特性试验研究[J].岩土工程学报,2009,31(12):1833-1837.
[6] 孙 州,张孟喜,姜圣卫.条形荷载下土工格室加筋砂土路堤模型试验研究[J].岩土工程学报,2015,37(增刊2):170-175.
[7] 杨 庆,季大雪,栾茂田,等.土工格栅加筋路堤边坡结构性能模型试验研究[J].岩土力学,2005,26(8):1243-1246,1252.
[8] 王协群,王 陶,王 钊.土工格室加筋地基的承载力[J].长江科学院院报,2004,21(2):60-62.
[9] LI Li-hua, CUI Fei-long, HU Zhi, et al. Experimental Study on the Properties of Geocell-Reinforced Embankments[C]∥Proceedings of China-Europe Conference on Geotechnical Engineering. Vienna, August 13-16, 2018: 1160-1163.
[10]MOGHADDAS TAFRESHI S N, DAWSON A R. A Comparison of Static and Cyclic Responses of Foundations on Geocell Reinforced Sand[J]. Geotextile and Geomembranes, 2012, 32: 55-68.
[11]HAZARIKA H, KIKUCHI Y, OTANI J. Evaluation of Tyre Products as Ground Improving Geomaterials[J]. Proceedings of the Institution of Civil Engineers Ground Improvement, 2012, 165(4):267-282.
[12]YOON Y W, CHEON S H, KANG D S. Bearing Capacity and Settlement of Tire-reinforced Sands[J]. Geotextile and Geomembranes, 2014, 22: 439-453.
[13]YOON Y W, HEO S B, KIM K S. Geotechnical Performance of Waste Tires for Soil Reinforcement from Chamber Tests[J].Geotextile and Geomembranes, 2008, 26(1):100-107.
[14]LI Li-hua, XIAO Heng-lin, FERREIRA P, et al. Study of a Small Scale Tire-reinforcement Embankment[J]. Geotextiles and Geomembranes,2016, 44(2):201-208.
[15]DUNCAN J M, CHANG C Y. Nonlinear Analysis of Stress and Strain in Soils[J]. ASCE Soil Mechanics & Foundation Division Journal, 1970, 96(5):1629-1653.
基金
国家自然科学基金项目(51678224,51778217);湖北省杰出青年基金项目(2018CFA063);省中央引导地方科技发展专项(2019ZYYD053,2018ZYYD005);湖北省高等学校优秀中青年科技创新团队计划项目(T201605)