基于多模式情景的长江中下游未来气象干旱时空演变特征分析

邓翠玲, 佘敦先, 邓瑶, 陈进, 张利平, 洪思

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (6) : 9-17.

PDF(18260 KB)
PDF(18260 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (6) : 9-17. DOI: 10.11988/ckyyb.20200970
水资源与环境

基于多模式情景的长江中下游未来气象干旱时空演变特征分析

  • 邓翠玲1, 佘敦先1, 邓瑶2, 陈进3, 张利平1, 洪思1
作者信息 +

Multi-model Projections of Meteorological Drought Characteristics under Different Scenarios in the Middle and Lower Reaches of Yangtze River Basin

  • DENG Cui-ling1, SHE Dun-xian1, DENG Yao2, CHEN Jin3, ZHANG Li-ping1, HONG Si1
Author information +
文章历史 +

摘要

为了分析未来时期(2020—2099年)长江中下游区域气象干旱演变特征,选取跨行业影响模式比较计划(ISIMIP)的4个全球气候模式,基于不同代表性浓度路径(RCP)的排放情景(RCP-2.6、RCP-6.0和RCP-8.5),分别计算了标准化降水指数(SPI)和标准化蒸散发指数(SPEI),探讨了两种指数对研究区气象干旱的刻画能力,分析了研究区未来气象干旱变化规律。研究结果表明:未来时期SPI整体呈增加趋势,汉江流域和洞庭湖水系西北区域增加幅度较大,说明该区域干旱减缓趋势明显;SPEI呈显著减小趋势,且随着排放浓度的增加,减小幅度逐渐增加,洞庭湖水系和鄱阳湖水系东南区域减小趋势较大,说明该区域未来时期干旱增加趋势明显;不同情景下SPI减小的区域SPEI也呈减小趋势且减小幅度更大;研究区SPI与SPEI的相关性从北到南、从西到东逐渐增强;SPI与SPEI的整体相关性随着排放浓度的增加逐渐减弱。研究成果有助于预估未来长江中下游区域干旱发生演变规律。

Abstract

To reveal the change trend and evolution patterns of future drought during 2020-2099 in the middle and lower reaches of the Yangtze River Basin, we calculated the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) based on precipitation and potential evapotranspiration (PET) data from 4 Global Climate Models (GCMs) under RCP-2.6,RCP-6.0 and RCP-8.5 scenarios, which are derived from Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP). We also looked into the performance of SPI and SPEI in detecting and depicting drought features. Results unveil an overall climbing trend of SPI in future, with the Hanjiang River basin and the northwest Dongting Lake network witnessing a surge, which means that drought in these regions will relieve obviously in the future. SPEI shows a reducing trend in most regions under all scenarios, and such reduction escalates with the rising of emission concentration; particularly, in the southeast of Dongting Lake network and Poyang Lake network,the reductions are larger than that in other regions,implying a notable drying trend in future.SPEI drops greater in regions where SPI declined under all scenarios.The correlation between SPI and SPEI gradually intensifies from north to south and from west to east in the study area.The overall correlation between SPI and SPEI weakens gradually from RCP-2.6,to RCP-6.0 and to RCP-8.5 scenario.

关键词

干旱特征 / 时空演变 / SPI / SPEI / ISIMIP / 长江中下游区域

Key words

drought patterns / space-time evolution / SPI / SPEI / ISIMIP / middle and lower reaches of the Yangtze River Basin

引用本文

导出引用
邓翠玲, 佘敦先, 邓瑶, 陈进, 张利平, 洪思. 基于多模式情景的长江中下游未来气象干旱时空演变特征分析[J]. 长江科学院院报. 2021, 38(6): 9-17 https://doi.org/10.11988/ckyyb.20200970
DENG Cui-ling, SHE Dun-xian, DENG Yao, CHEN Jin, ZHANG Li-ping, HONG Si. Multi-model Projections of Meteorological Drought Characteristics under Different Scenarios in the Middle and Lower Reaches of Yangtze River Basin[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(6): 9-17 https://doi.org/10.11988/ckyyb.20200970
中图分类号: P426.616   

参考文献

[1] DAI A.Increasing Drought under Global Warming in Observations and Models[J]. Nature Climate Change, 2012, 3(1): 52-58.
[2] 王芝兰, 王劲松, 李耀辉,等. 标准化降水指数与广义极值分布干旱指数在西北地区应用的对比分析[J]. 高原气象, 2013, 32(3): 839-847.
[3] KEYANTASH J, DRACUP J A. The Quantification of Drought: An Evaluation of Drought Indices[J]. Bulletin of the American Meteorological Society, 2002, 83(8): 1167-1180.
[4] 杨金虎, 张 强, 王劲松,等. 近60年来西南地区旱涝变化及极端和持续性特征认识[J]. 地理科学, 2015, 35(10): 1333-1340.
[5] HUANG J, ZHAI J, JIANG T, et al. Analysis of Future Drought Characteristics in China Using the Regional Climate Model CCLM[J]. Climate Dynamics, 2017, 50(1/2): 507-525.
[6] 田 佳. 气象干旱研究进展[J]. 水利与建筑工程学报, 2016, 14(4): 216-221.
[7] 李忆平, 李耀辉. 气象干旱指数在中国的适应性研究进展[J]. 干旱气象, 2017, 35(5): 709-723.
[8] 郑金涛, 彭 涛, 董晓华, 等. 三峡库区气象干旱演变特征及致灾因子危险性评价[J]. 水土保持研究, 2020, 27(5): 1-8.
[9] 李 明, 柴旭荣, 王贵文, 等. 长江中下游地区气象干旱特征[J]. 自然资源学报, 2019, 34(2): 374-384.
[10] MCKEE T B,DOESKEN N J,KLEIST J.The Relationship of Drought Frequency and Duration to Time Scales[C]//Proceedings of the Eighth Conference on Applied Climatology.Anaheim, California.January 17-22,1993: 1-6.
[11] PALMER W C. Meteorological Drought[M]. Washington D C: USA Department of Commerce, 1965.
[12] VICNTE-SERRANO S, BEGUER A S, L PEZ-MORENO J I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate, 2010, 23:1696-1718.
[13] LIU Z, WANG Y, SHAO M, et al. Spatiotemporal Analysis of Multiscalar Drought Characteristics across the Loess Plateau of China[J]. Journal of Hydrology, 2016, 534: 281-299.
[14] 庄少伟,左洪超,任鹏程,等.标准化降水蒸发指数在中国区域的应用[J].气候与环境研究,2013,18(5):617-625.
[15] YU M, LI Q, HAYES M J, et al. Are Droughts Becoming More Frequent or Severe in China Based on the Standardized Precipitation Evapotranspiration Index: 1951-2010? [J]. International Journal of Climatology, 2014, 34(3): 545-558.
[16] 张奇谋, 陈 思, 陈松生, 等. 不同RCP情景下未来汉江流域气象干旱变化趋势预估研究[J]. 长江流域资源与环境, 2019, 28(6): 1470-1480.
[17] 杨 庆, 李明星, 郑子彦, 等. 7种气象干旱指数的中国区域适应性[J]. 中国科学:地球科学, 2017, 47(3): 337-353.
[18] 胡 实, 莫兴国, 林忠辉. 未来气候情景下我国北方地区干旱时空变化趋势[J]. 干旱区地理, 2015, 38(2): 239-248.
[19] 彭书时, 朴世龙, 于家烁, 等. 地理系统模型研究进展[J]. 地理科学进展, 2018, 37(1): 109-120.
[20] ZHANG R, ZHAO C, MA X, et al. Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia[J]. Sustainability, 2019, 11: 4421-4440.
[21] BYERS E, GIDDEN M, LECLERE D, et al. Global Exposure and Vulnerability To Multi-Sector Development And Climate Change Hotspots[J]. Environmental Research Letters, 2018, 13(5): 055012.
[22] 王书霞, 张利平, 李 意, 等. 气候变化情景下澜沧江流域极端洪水事件研究[J]. 气候变化研究进展, 2019, 15(1): 23-32.
[23] LIU Y, GAO B, PAN Y. Assessing the Fluctuation Characteristics of Grain Output in China[J]. Outlook on Agriculture, 2015, 44(3): 243-251.
[24] 曹 博, 张 勃, 马 彬, 等. 基于SPEI指数的长江中下游流域干旱时空特征分析[J]. 生态学报, 2018, 38(17): 6258-6267.
[25] 刘君龙, 袁 喆, 许继军, 等. 长江流域气象干旱演变特征及未来变化趋势预估[J]. 长江科学院院报, 2020,37(10):28-36.
[26] 贾艳艳, 唐晓岚, 唐芳林, 等. 长江中下游流域人类活动强度及其对湿地景观格局影响研究[J]. 长江流域资源与环境, 2020, 29(4): 950-963.
[27] LANGE S. EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-corrected for ISIMIP (EWEMBI) GFZ Data Services[J]. DOI: 10.5880/pik.2019.004.
[28] FRIELER K, LANGE S, PIONTEK F, et al. Assessing the Impacts of 1.5℃ Global Warming - Simulation Protocol of the Inter-sectoral Impact Model Intercomparison Project (ISIMIP2b)[J]. Geoscientific Model Development, 2017, 10: 4321-4345.
[29] MENG Y, LIU J, LEDUC S, et al. Hydropower Production Benefits More from 1.5 ℃ Than 2 ℃ Climate Scenario[J]. Water Resources Research, 2020, 56(5): e2019WR025519.
[30] YANG Y, JIN C, ALI S. Projection of Heat Wave in China under Global Warming Targets of 1.5 ℃ and 2 ℃ by the ISIMIP Models[J]. Atmospheric Research, 2020, 244: 105057.
[31] 张奇谋, 王 润, 姜 彤, 等. RCPs情景下汉江流域未来极端降水的模拟与预估[J]. 气候变化研究进展, 2020, 16(3): 276-86.
[32] 方国华, 涂玉虹, 闻 昕, 等. 1961—2015年淮河流域气象干旱发展过程和演变特征研究[J]. 水利学报, 2019, 50(5): 598-611.
[33] 彭崑生.江西生态[M].南昌:江西人民出版社, 2007.

基金

国家重点研发计划项目(2017YFA0603704); 中央高校基本科研业务费专项(2042020kf0005)

PDF(18260 KB)

Accesses

Citation

Detail

段落导航
相关文章

/