基于2013—2015年和2016—2019年2个阶段历史山洪灾害调查成果,分析了重庆市境内有历史记录的831次山洪灾害时空分布特征,利用ArcGis中的重力模型、标准差椭圆模型研究山洪灾害空间变化规律,并通过地理探测器模型开展了驱动因素分析。分析和研究结果表明:①从山洪灾害频次历年分布来看,重庆市历史山洪灾害大体分为3个阶段:受历史山洪灾害文献记录所限,1926—1977年和1977—2006年期间分别为灾害发生的低频期和低频波动期;随着极端暴雨事件和社会经济快速发展,2006—2017年期间为灾害发生的高频波动期,同时小波分析显示灾害频次呈3.7 a的周期变化。②从山洪灾害造成的死亡、失踪人员来看,2000年以后,尽管灾害频次不断上升,但因灾死亡、失踪人数趋于平稳,体现了山洪灾害防治措施发挥了效益。③5月份重庆地区灾害重心在渝东南彭水、武隆一带,6月份灾害重心向北迁移,进入7月份以后,灾害重心向渝西地区迁移,随后8—9月份,灾害逐渐转向渝东北。④地理探测器模型分析显示,河网密度和高程因子对山洪灾害解释程度较好,各因子两两叠加后,解释力均呈非线性增强。重庆市历史山洪灾害规律的研究成果有助于认清重庆市山洪灾害时空演变格局及驱动因素,可为山洪灾害防治工作提供技术支撑与理论指导。
Abstract
Based on investigations of mountain torrents in 2013-2015 and 2016-2019, this study analyzes the temporal and spatial characteristics of 831 historical mountain torrent disasters in Chongqing. The spatial changes of mountain torrent disasters are researched using an ArcGIS gravity model and the standard deviation ellipse model, while the driving factors are identified using the geographic detector model. The frequency of disasters can be divided into three stages based on statistical analysis of disaster frequency over time: a low-frequency period from 1926 to 1977, a low-frequency fluctuation period from 1977 to 2006, and a high-frequency fluctuation period from 2006 to 2017, which is related to literature records, rainfall conditions, and social and economic development. Wavelet analysis shows that the mountain flood disasters in recent years change periodically every 3.7 years. Despite of increased frequency of disasters since 2000, the number of deaths and missing persons due to disasters has stabilized, reflecting the effectiveness of mountain torrent prevention and control measures. The disasters concentrated in the Pengshui and Wulong areas in Southeast Chongqing in May and moved northward in June. After July, the focus of disasters moved westward to west Chongqing and then gradually forward to northeast Chongqing from August to September. The geographic detector model analysis shows that the river network density and elevation factors have a significant impact on mountain flood disasters. After the superposition of each factor, the release force increases non-linearly. This study comprehensively summarizes the historical patterns of mountain torrents in Chongqing, providing important insights into the temporal and spatial evolution pattern of mountain torrents and their driving factors in Chongqing. The results could provide technical support and theoretical guidance for mountain torrent prevention and control.
关键词
山洪灾害 /
调查成果 /
重力模型 /
标准差椭圆模型 /
地理探测器模型 /
时空演变特征 /
重庆市
Key words
mountain torrent disaster /
survey results /
gravity model /
standard deviation ellipse model /
geographic detector model /
temporal and spatial evolution characteristics /
Chongqing
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵士鹏.中国山洪灾害系统的整体特征及其危险度区划的初步研究[J]. 自然灾害学报,1996,5(3):93-99.
[2] 国家防汛抗旱总指挥部办公室, 中国科学院, 水利部成都山地灾害与环境研究所. 山洪泥石流滑坡灾害及防治[M]. 北京: 科学出版社, 1994.
[3] 郭 良, 张晓蕾, 刘荣华, 等. 全国山洪灾害调查评价成果及规律初探[J]. 地球信息科学学报, 2017, 19(12): 1548-1556.
[4] 张乾柱, 卢 阳, 秦 维, 等. 重庆市山洪灾害空间分布规律及影响因素研究[J]. 人民长江, 2018, 49(1): 13-18, 22.
[5] 赵 健, 范北林. 全国山洪灾害时空分布特点研究[J]. 中国水利, 2006(13): 45-47.
[6] 方秀琴, 王 凯, 任立良, 等. 基于GIS的江西省山洪灾害风险评价与分区[J]. 灾害学,2017,32(1):111-116.
[7] 丁文峰, 杜 俊, 陈小平, 等. 四川省山洪灾害风险评估与区划[J]. 长江科学院院报,2015,32(12):41-45, 97.
[8] 韩友平. 山洪灾害防治非工程措施关键技术研究[M]. 武汉: 湖北科学技术出版社, 2014.
[9] ROZALIS S, MORIN E, YAIR Y, et al. Flash Flood Prediction Using an Uncalibrated Hydrological Model and Radar Rainfall Data in a Mediterranean Watershed under Changing Hydrological Conditions[J]. Journal of Hydrology, 2010, 394(1/2): 245-255.
[10]CLARK R A, GOURLEY J J, FLAMIG Z L, et al. CONUS-Wide Evaluation of National Weather Service Flash Flood Guidance Products[J]. Weather and Forecasting, 2014, 29(2): 377-392.
[11]刘业森, 杨振山, 黄耀欢, 等. 建国以来中国山洪灾害时空演变格局及驱动因素分析[J]. 中国科学: 地球科学, 2019, 49(2): 408-420.
[12]熊俊楠, 李 进, 程维明, 等. 西南地区山洪灾害时空分布特征及其影响因素[J]. 地理学报, 2019, 74(7): 1374-1391.
[13]王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
[14]重庆市气象局. 重庆直辖市气候资源与气象灾害及其对策建议[R]. 重庆:重庆市气象局,1998.
[15]长江水利委员会. 全国山洪灾害防治规划报告[R]. 武汉:长江水利委员会,2005.
[16]何 敏, 孙 利, 唐 威. 洪灾形成过程中人与自然关系探究[J]. 长江技术经济, 2020, 4(4): 5-9.
[17]马建华, 胡维忠. 我国山洪灾害防灾形势及防治对策[J]. 人民长江, 2005, 36(6): 3-5.
[18]黄会杰, 彭 超, 徐 刚, 等. 重庆市区域性暴雨危险性定量分析及其时空分布规律研究[J]. 地球与环境, 2018, 46(3): 237-244.
[19]熊俊楠, 赵云亮, 程维明, 等. 四川省山洪灾害时空分布规律及其影响因素研究[J]. 地球信息科学学报, 2018, 20(10): 1443-1456.
[20]李华威, 万 庆. 小流域山洪灾害危险性分析之降雨指标选取的初步研究[J]. 地球信息科学学报, 2017, 19(3): 425-435.
[21]杜 俊, 丁文峰, 任洪玉. 四川省不同类型山洪灾害与主要影响因素的关系[J]. 长江流域资源与环境, 2015, 24(11): 1977-1983.
[22]杨 春.山地型农村居民点空间分布特征及其布局优化研究:以陕西省千阳县为例[D].西安:西北大学,2012.
[23]朱翠霞, 陈阿林, 刘 琳. 基于GIS的区域人口统计数据空间化: 以重庆都市区为例[J]. 重庆师范大学学报(自然科学版), 2013, 30(5): 50-55.
[24]张 霞, 魏朝富, 倪九派, 等. 重庆市低山丘陵区农村居民点分布格局及其影响因素[J]. 中国农业资源与区划, 2012, 33(3): 45-50, 57.
[25]李 静, 罗灵军, 钱文进, 等. 基于GIS的重庆市人口空间分布研究[J]. 地理空间信息, 2013, 11(2): 42-46, 9.
基金
武汉市2022年度知识创新专项-曙光计划项目(2022020801020245);中央级公益性科研院所基本科研业务费项目(CKSF2023299/CQ;CKSF2021744/TB);国家重点研发计划项目(2021YFE0111900)