用水量效益函数能够指示用水效益随用水量的变化特征。基于2000—2018年唐白河流域5个地区用水量和经济效益指标的面板数据,应用固定效应模型,分别采用截面加权最小二乘法和似不相关法进行回归计算,定量分析该地区用水经济效益与用水量的关系,得到唐白河流域及其不同产业的用水量效益函数。结果表明:唐白河流域人均农业增加值随农业用水量的变化关系呈倒“N”型,人均工业增加值随工业用水量的变化关系呈增长型,人均GDP随用水总量的变化关系呈“U”型;在不同产业中,各地区的经济效益与用水量均有着较大差异,需采取不同的用水策略。研究成果可为唐白河流域的用水管理与水资源配置提供参考依据。
Abstract
The water use benefit function indicates the characteristics of economic benefits varying with water use. According to the panel data of water use and economic growth indicators of five regions in Tangbai River Basin from 2000 to 2018, we analyzed quantitatively the relation between water use benefits and water use using the fixed effect model through regression calculation with the cross-section weighted least square method and the seeming unrelated regression. We obtained the water use benefit functions for the whole basin and for different industries in the basin. Our findings suggest that the relation curve of per capita added value of farming, forestry, animal husbandry and fishery against agricultural water use displays an inverted N-shape; per capita industrial added value increased with industrial water use; the relation curve of per capita GDP against total water use displayed a U-shape. The water use and economic benefits of different industries varied remarkably among different regions, hence calling for varied water use strategies. The research findings offer reference for water management and water resources allocation in Tangbai River Basin.
关键词
用水量效益函数 /
环境库兹涅茨曲线 /
经济效益 /
似不相关回归 /
截面加权最小二乘法 /
唐白河流域
Key words
water use benefit function /
Environmental Kuznets Curve (EKC) /
economic benefits /
seeming unrelated regression /
cross-section weighted least square method /
Tangbai River basin
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KUZNETS S. Economic Growth and Income Inequality[J]. American Economic Review, 1955, 45(1): 1-28.
[2] GROSSMAN G M,KRUEGER A B.Environmental Impacts of the North American Free Trade Agreement[R].Massachusetts: National Bureau of Economic Research,1991.
[3] THEODORE P. Environmental Degradation at Different Stages of Economic Development[M]//DOELEMAN J A, BEYOND R. The Environment Crisis and Sustainable Livelihoods in the Third World. New York: St. Martin's Press, 1995.
[4] SABOORI B, SULAIMAN J. Environmental Degradation, Economic Growth and Energy Consumption: Evidence of the Environmental Kuznets Curve in Malaysia[J]. Energy Policy, 2019,60(5): 892-905.
[5] 洪业应.农业非点源污染与经济增长关系的实证研究:基于环境库兹涅茨曲线检验[J].长江科学院院报,2014,31(1):33-37,41.
[6] 刘 艺,张郑贤,张锋贤,等.济南市水资源环境与经济发展耦合关联性测度及前景预测[J].长江科学院院报,2020,37(2):28-33,47.
[7] 张陈俊,章恒全,陈其勇,等.用水量与经济增长关系的实证研究[J].资源科学,2015,37(11):2228-2239.
[8] HAO Yu, HU Xin-lei, CHEN He-yin. On the Relationship Between Water Use and Economic Growth in China: New Evidence from Simultaneous Equation Model Analysis[J]. Journal of Cleaner Production, 2019, 235: 953965.
[9] 张兵兵,沈满洪.工业用水库兹涅茨曲线分析[J].资源科学,2016,38(1):102-109.
[10] 刘 渝,杜 江,张俊飚.中国农业用水与经济增长的Kuznets假说及验证[J].长江流域资源与环境, 2008,17(4):593-597.
[11] 陈云松,范晓光.社会学定量分析中的内生性问题测估社会互动的因果效应研究综述[J].社会,2010,30(4):91-117.
[12] 龚循强,李志林.稳健加权总体最小二乘法[J].测绘学报,2014,43(9):888-894.
[13] 同济大学数学系. 概率论与数理统计[M]. 上海:同济大学出版社, 2015.
[14] M·R·施皮格尔. 概率统计的理论和习题[M]. 上海:上海科学技术出版社, 1988.
[15] 卢小广,闫杰主. 统计分析与建模 SPSS在经济管理中的应用及实例[M]. 北京:北京交通大学出版社, 2017.
[16] 周 扬.企业税负与零售企业赢利模式:基于面板似不相关回归的实证分析[J].中国流通经济,2016,30(3):62-70.
[17] 刘 斌,张怀清. 应用计量经济学[M]. 北京:中国金融出版社, 2010.
[18] 中华人民共和国水利部.中国水资源公报[DB/OL].doi: http://www.mwr.gov.cn/sj/tjgb/szygb/201907/t20190712_1349118.html,2018.
[19] 湖北省统计局.湖北统计年鉴[M].北京:中国统计出版社,2018.
[20] 河南省统计局.河南统计年鉴[M].北京:中国统计出版社,2018.
[21] 左秀霞.单位根检验的理论及应用研究[D].武汉:华中科技大学,2012.
[22] BREITUNG J. Testing for Unit Roots in Panels with a Factor Structure[J]. Econometric Theory, 2008, 24(1): 88-108.
[23] LEVIN A, LIN C F, CHU C. Unit Root Tests in Panel Data: Asymptotic and Finite Sample Properties[J]. Journal of Econometrics, 2002, 108(1): 1-24.
[24] IM K S, PESARAN M H, SHIN Y.Testing for Unit Roots in Heterogeneous Panels[J]. Journal of Econometrics, 2003,115(1):53-74.
[25] MADDALA G S, WU S. A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test[J]. Oxford Bulletin of Economics and Statistics, 1999,61(Supp.1): 631-652.
[26] CHOI I. Unit Root Tests for Panel Data[J]. Journal of International Money and Finance,2001,20(2):249-272.
[27] 王维国,薛 景,于 刚.基于结构突变和截面相关的面板协整检验[J].经济技术经济研究,2013(5):75-89.
[28] 王 重,刘黎明.拟合优度检验统计量的设定方法[J].统计与决策,2010,5(6):154-156.
[29] 刘 明,王永瑜. Durbin-Watson自相关检验应用问题探讨[J]. 数量经济技术经济研究,2014,31(6):153-160.