为了探究不同粗糙度断续节理岩体直剪试验的裂纹扩展过程及破坏模式,基于颗粒流方法,对试样施加不同法向应力,并探讨了预剪面应力演化过程。研究结果表明:根据微观裂纹的张、剪属性及其演化过程,岩桥破坏模式大体可分为5类,且与法向应力和节理面粗糙度密切相关,法向应力、节理粗糙度的增加都会促使岩桥向剪切破坏方式转变;初始翼裂纹与原节理面的夹角对法向应力变化不敏感,而随着节理粗糙度的增加而减小;在剪切过程中,预剪面上的应力分布不均匀且不断进行重分布,对于平直节理岩体剪应力主要由岩桥承担,且无论水平向还是法向,岩桥部分压应力均大于节理部分;而对于粗糙节理岩体,剪应力由节理和岩桥共同承担,且节理部分的应力均高于岩桥部分。研究成果对进一步明确断续节理岩体的力学参数有参考价值。
Abstract
The crack propagation process and failure mode of discontinuous jointed rock mass with different roughness coefficients under different normal stresses are studied via particle flow method, and the stress evolution process of pre-shearing plane is discussed. Results reveal that the failure modes of rock bridge can be roughly divided into five categories according to the tensile and shear properties of micro-cracks and their evolution process, which are closely related to the normal stress and joint surface roughness coefficients. The increments in normal stress and joint surface roughness coefficients would instigate rock bridge towards shear failure. The angle between the initial wing crack and the original joint surface is not sensitive to the change of normal stress; but declines with the increase of joint roughness coefficients. In the shearing process, the stress on the pre-shearing plane does not distribute uniformly and meanwhile redistributes continuously. The shear stress of flat jointed rock mass is mainly borne by rock bridge, and the compressive stress of the rock bridge is greater than that of the joint in both horizontal and normal directions, while for rough jointed rock mass, the shear stress is borne by both the joint and the rock bridge, and the stress of the joint part is higher than that of the rock bridge.
关键词
断续节理岩体 /
节理粗糙度 /
分形模型 /
岩桥 /
破坏模式
Key words
discontinuous jointed rock mass /
joint roughness coefficient /
fractal model /
rock bridge /
failure mode
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LAJTAI E Z.Shear Strength of Weakness Planes in Rock[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1969, 6(5): 499-515.
[2] LAJTAI E Z. Strength of Discontinuous Rocks in Direct Shear[J]. Geotechnique, 1969, 19(2): 218-233.
[3] 朱维申, 李术才, 陈卫忠. 节理岩体破坏机理和锚固效应及工程应用[M]. 北京:科学出版社, 2002.
[4] WONG R H C, CHAU K T, TSOI P M, et al. Pattern of Coalescence of Rock Bridge between Two Joints under Shear Loading[C]//International Congress on Rock Mechanics. Rotterdam: A. A. Balkema, 1999: 735-738.
[5] 刘远明, 夏才初. 直剪条件下非贯通节理岩体岩桥力学性质弱化机制及贯通模型初步研究[J]. 岩土力学, 2010, 31(3): 695-701.
[6] 陈国庆, 王剑超, 王 伟, 等. 不同连通率断续节理岩体直剪破坏特征[J]. 工程地质学报, 2017, 25(2): 322-329.
[7] 张黎明, 陈国庆, 李志波, 等. 共面断续岩桥直剪试验破坏过程研究[J]. 长江科学院院报, 2018, 35(10): 124-129,146.
[8] 唐志成, 夏才初, 丁增志. 非贯通类节理岩体剪切变形规律分析[J]. 岩土力学, 2011, 32(8): 2353-2358.
[9] 刘远明, 刘 杰, 夏才初. 不同节理表面形貌下非贯通节理岩体强度特性直剪试验研究[J].岩土力学, 2014, 35(5): 1269-1274.
[10]刘顺桂, 刘海宁, 王思敬, 等. 断续节理直剪试验与PFC2D数值模拟分析[J]. 岩石力学与工程学报, 2008, 27(9): 1828-1828.
[11]蒋明镜 ,孙 亚 ,陈 贺, 等. 非贯通非共面节理岩体直剪试验DEM数值模拟[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3667-3675.
[12]蒋明镜, 刘 蔚, 孙 亚, 等.考虑环境劣化非贯通节理岩体的直剪试验离散元模拟[J]. 岩土力学, 2017, 38(9): 2728-2736.
[13]ZHANG X P, WONG L N Y. Cracking Processes in Rock-Like Material Containing a Single Flaw Under Uniaxial Compression: A Numerical Study Based on Parallel Bonded-Particle Model Approach[J]. Rock Mechanics and Rock Engineering, 2012, 45(5):711-737.
[14]ZHANG X P, WONG L N Y. Crack Initiation, Propagation and Coalescence in Rock-like Material Containing Two Flaws: A Numerical Study Based on Bonded-particle Model Approach[J]. Rock Mechanics & Rock Engineering, 2013, 46(5):1001-1021.
[15]POTYONDY D O. A Flat-jointed Bonded-particle Material for Hard Rock[C]//American Rock Mechanics Association. Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium. Chicago, IL, USA, June 24-27, 2012: 1510-1519.
[16]余华中, 阮怀宁, 褚卫江.大理岩脆-延-塑转换特性的细观模拟研究[J]. 岩石力学与工程学报, 2013, 32(1): 55-64.
[17]XIE H P,PARISEAU W G.Fractal Estimation of Joint Roughness Coefficients[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1995(6): 266A.
[18]THORNTON C,ZHANG L. Numerical Simulations of the Direct Shear Test[J]Chemical Engineering & Technology, 2003, 26(2): 153-156.