为有效解决回填工程中传统填料压实不足的难题,利用开挖粉土、水泥和水作为原材料制备具有自流平和自密实特性的新型回填材料。同时,为提高工业废弃物的资源化利用程度,进一步降低工程造价,将氧化铝工业产生的赤泥引入到回填材料的制备中,用以代替部分水泥。在混合料配合比设计中,以流动度作为控制指标,得到水固比为0.43时所制得的混合料满足流动度要求(200~300 mm)。在此基础上,通过一系列室内试验,分别对混合料的流动性、泌水性和抗压强度进行了研究。试验结果表明:赤泥含量的增加能减小拌合物的流动度和泌水率,并且能加快泌水完成时间;用赤泥替代部分水泥,并不影响混合料强度的增长速率;与不掺加赤泥的混合料强度相比,赤泥替代水泥掺量在10%~15%范围时的混合料强度会增大,而赤泥替代量<10%或>15%时的混合料强度均会减小。对于粉土流动化回填材料,赤泥在泌水稳定性和强度方面均展现出良好的应用前景。
Abstract
A new type of backfill material with self-leveling and self-compacting properties was prepared with excavated silt, cement and water as raw materials to effectively solve the problem of insufficient compaction of traditional fillers in backfilling projects. The red mud produced by the alumina industry was incorporated into the backfill material to replace part of the cement, with the purpose of improving the utilization of industrial waste and further reducing construction cost. With flowability as the control index in mix proportion design, the mixture with a water-solid ratio of 0.43 could meet the flowability requirement (200-300 mm). Furthermore, the flowability, bleeding and compressive strength of the mixture were examined respectively via indoor test. Results demonstrated that the increase of red mud could reduce the flowability and bleeding rate of the mixture, and meanwhile accelerate the bleeding. The partial replacement of cement by red mud does not affect the growth rate of the mixture’s strength. The strength of the mixture increases when red mud content is in the range of 10%-15%, while declines when red mud content is smaller than 10% or greater than 15%. Red mud has a good application prospect in terms of bleeding stability and strength for flowable silt backfill materials.
关键词
流动化回填材料 /
工业固废 /
赤泥 /
粉土 /
流动度 /
泌水率
Key words
flowable backfill materials /
industrial solid waste /
red mud /
silt /
performance /
bleeding rate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冉 晋,张金喜,王建刚,等.快硬性建筑垃圾流动化回填材料制备与性能[J].公路,2016,61(3):190-195.
[2] American Concrete Institute. Controlled Low-strength Materials(CLSM)[R]. Michigan, USA: ACI, 1999.
[3] ZHANG J, WANG J, LI X, et al. Rapid-hardening Controlled Low Strength Materials Made of Recycled Fine Aggregate from Construction and Demolition Waste[J]. Construction and Building Materials, 2018, 173: 81-89.
[4] 李 飞,刘晨辉,吴英彪,等.建筑垃圾再生材料对可控低强材料(CLSM)性能影响研究[J].混凝土,2018(8):71-73,78.
[5] 徐日庆,文嘉毅,董 梅.工业废料固化浅层淤泥质土研究[J].长江科学院院报,2020,37(5):85-91.
[6] WANG L, ZOU F, FANG X, et al. A Novel Type of Controlled Low Strength Material Derived from Alum Sludge and Green Materials[J]. Construction and Building Materials, 2018, 165: 792-800.
[7] MNEINA A, SOLIMAN A M, AHMED A, et al. Engineering Properties of Controlled Low-strength Materials Containing Treated Oil Sand Waste[J]. Construction and Building Materials, 2018, 159: 277-285.
[8] WU H, HUANG B, SHU X, et al. Utilization of Solid Wastes/Byproducts from Paper Mills in Controlled Low Strength Material (CLSM)[J]. Construction and Building Materials, 2016, 118: 155-163.
[9] KIM Y, DO T M, KIM H, et al. Utilization of Excavated Soil in Coal Ash-based Controlled Low Strength Material (CLSM)[J]. Construction and Building Materials, 2016, 124: 598-605.
[10]张 骏,兰思杰,李 阳,等.用电石渣、钢渣和煤矸石制备可控性低强度材[J].环境工程学报,2016,10(4):1967-1972.
[11]刘 萌. 建筑渣土制备可控低强材料及性能研究[D]. 北京:北京建筑大学,2016.
[12]QIAN J, HU Y, ZHANG J, et al. Evaluation the Performance of Controlled Low Strength Material Made of Excess Excavated Soil[J]. Journal of Cleaner Production, 2019, 214: 79-88.
[13]薛生国,李玉冰,郭 颖.氧化铝工业赤泥环境影响研究进展[J].中国科学院大学学报,2017,34(4):401-412.
[14]董晓强,张 强,寇晓辉,等.赤泥黄土复合体的动参数试验研究[J]. 东南大学学报(自然科学版),2016,46(增刊1):135-141.
[15]ASTM D 6103—04, Standard Test Method for Flow Consistency of Controlled Low Strength Material (CLSM)[S]. Conshohocken, PA, USA: American Society for Testing and Materials, 2004.
[16]ASTM C232/C232M—14, Standard Test Method for Bleeding of Concrete. American Society for Testing and Materials[S]. Conshohocken, PA, USA: American Society for Testing and Materials, 2014.
[17]YAN D Y S,TANG I Y, LO I M C.Development of Controlled Low-strength Material Derived from Beneficial Reuse of Bottom Ash and Sediment for Green Construction[J].Construction and Building Materials,2014,64:201-207.
[18]SHEEN Y N, HUANG L J, WANG H Y, et al. Experimental Study and Strength Formulation of Soil-based Controlled Low-strength Material Containing Stainless Steel Reducing Slag[J]. Construction and Building Materials, 2014, 54: 1-9.
基金
中国博士后科学基金项目(2019M652302);山东省自然科学基金项目(ZR2017QEE009)