采用GDS动三轴试验仪,对某尾矿坝的尾矿粉土筑坝料进行了动模量与阻尼比试验,研究了尾矿粉土的动应力-动应变特性,分析了围压和固结比对最大动剪切模量、动剪切模量比和阻尼比的影响,并基于沈珠江动力本构模型,提出了可以将固结比影响归一化的最大动剪切模量和模量衰减的修正公式。试验结果表明:随着围压和固结比增大,尾矿粉土的动弹性模量增大,阻尼比减小;随着动应变的增大,动剪切模量比逐渐减小,阻尼比变大;该修正公式可以将固结比和围压对最大动剪切模量和模量衰减的影响归一化,能较准确地反映尾矿粉土的动力变形特性。
Abstract
The dynamic modulus damping ratio of the tailings silt damming material of a tailings dam was tested using the GDS dynamic triaxial apparatus. The dynamic stress-strain characteristics of tailings silt were examined, and the effect of confining pressure and consolidation ratio on the maximum dynamic shear modulus as well as dynamic shear modulus ratio and damping ratio were analyzed. Moreover, the modified formulae for the maximum dynamic shear model and modulus attenuation which could normalize the influence of consolidation ratio was proposed based on Zhujiang Shen’s dynamic constitutive model. Test results demonstrated that with the rising of confining pressure and consolidation ratio, the dynamic elastic modulus of tailings silt increased while damping ratio decreased. With the augment of dynamic strain, the dynamic shear modulus ratio reduced while damping ratio increased. The modified formulae could normalize the effects of consolidation ratio and confining pressure on the maximum dynamic shear modulus and modulus attenuation, and thus accurately reflecting the dynamic deformation characteristics of tailings silt.
关键词
尾矿粉土 /
动三轴试验 /
动模量 /
阻尼比 /
动剪切模量比 /
动力本构模型 /
固结比
Key words
tailings silt /
dynamic triaxial test /
dynamic modulus /
damping ratio /
dynamic shear modulus ratio /
dynamic constitutive model /
consolidation ratio
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 沃延枢.尾矿库手册[M].北京:冶金工业出版社,2013.
[2] 杜艳强.细粒尾矿的工程特性及尾矿坝的动力分析[D].重庆: 重庆大学,2016.
[3] GB 50863—2013,尾矿设施设计规范[S].北京:中国计划出版社,2013.
[4] 杜艳强,杨春和,张 超,等.尾矿粉土液化后的大变形特性试验研究[J].东北大学学报(自然科学版),2016,37(8):1166-1171.
[5] 杜艳强,杨春和,巫尚蔚.循环荷载下尾矿粉土的孔隙水压力特性[J].东北大学学报(自然科学版),2016,37(4):583-588.
[6] 王文松.地震作用下高堆尾矿坝动力稳定性研究[D].重庆: 重庆大学,2017.
[7] 乐 陶,张 进,曹纪刚.磷矿浮选细粒尾矿的动力特性试验[J]. 现代矿业,2014(11): 98-100.
[8] 何新宁.细粒尾矿料力学特性及其筑坝静动力分析[D].西安:西安理工大学,2017.
[9] 尹光志,王文松,魏作安,等.小打鹅尾矿库筑坝尾矿的动力学特性试验研究[J].岩石力学与工程学报,2017,36(增刊1):3121-3130.
[10]谭 凡,饶锡保,黄 斌,等.饱和尾矿粉土动力特性试验研究[J]. 地震工程学报,2015,35(3):772-777.
[11]赵 辉.不同级配无粘性尾矿料动力特性研究[D].石家庄:石家庄铁道大学,2018.
[12]GEREMEW A M, YANFUL E K. A Laboratory Investigation of the Dynamic Properties of Tailing[J]. International Journal of Geomechanics, 2013, 13(4): 441-453.
[13]SUAZO G, FOURIE A, DOHERTY J. Effects of Confining Stress, Density and Initial Static Shear Stress on the Cyclic Shear Response of Fine-grained Unclassified Tailings[J]. Geotechnique, 2016, 66(5): 401-412.
[14]谢定义.土动力学[M].北京:高等教育出版社,2011.
[15]SEED H B.Evaluation of Soil Liquefaction Potential for Level Ground During Earthquakes:A Summary Report[R]. Doi: 10.2172/7146067.
[16]沈珠江,徐 刚.堆石料的动力变形特性[J].水利水运科学研究,1996,6(2):143-150.
基金
国家自然科学基金面上项目(51779017);国家自然科学基金-雅砻江联合基金重点项目(U1765203);长江科学院中央级公益性科研院所基本科研业务费项目(CKSF2017023/YT, CKSF2016272/YT)