为探索路基工程中黄河淤积粉土的稳定技术和性能保障方案,针对德州齐河县境内的黄河淤积粉土,在乳化沥青复合稳定粉土(AE稳定土)的研究基础上,采用无机/有机复合材料制备出一种复合固化剂(FG固化剂),研究了AE稳定土和FG稳定土2种稳定方案下粉土的抗压强度性质、水稳定性和抗冻融能力;结合XRD、SEM表征技术,探讨了FG固化剂的稳定机理。研究认为,FG固化剂稳定土较AE稳定土有着更高的无侧限抗压强度、回弹模量和承载能力,水稳定性良好,在抗冻融能力上有着比AE稳定土更好的效果。XRD与SEM分析表明,FG固化剂提供了活性矿物质,其复合胶凝效应和填充增强保障了粉土的抗压强度,高分子物质起到粘结颗粒界面、填塞孔隙的作用,降低了内部孔隙率;两者造成土体的最大干密度变大;与AE稳定土的稳定机理不同。FG固化剂的使用为黄河粉土的稳定和工程应用提供了参考方法。
Abstract
Based on the study of emulsified asphalt (AE) composite stabilized silt, we prepared an FG curing agent using inorganic/organic composite materials for the silty soil near the Yellow River in Qihe county. We compared the strength properties, moisture stability and frost resistance between AE-stabilized and FG-stabilized silty soils, and furthermore discussed the stabilizing mechanism of FG curing agent via XRD and SEM. Our findings demonstrated that the silty soil stabilized by FG curing agent had better moisture stability and higher unconfined compressive strength, resilient modulus, bearing capacity, and frost resistance than AE-stabilized soil. XRD and SEM analysis suggest that the composite cementation effect and filling enhancement of the active minerals provided by the FG curing agent guaranteed the strength of the stabilized soil; the polymer material played the role of binding the particle interface and filling the pores, reducing the internal void ratio; and both boosted the maximum dry density of the soil; FG-stabilized soil displayed a different stability mechanism from that of AE-stabilized silt. The use of FG curing agent provides a reference for the stability and engineering application of Yellow River silty soil.
关键词
黄河淤积粉土 /
复合稳定 /
无侧限抗压强度 /
抗冻性 /
水稳定性
Key words
Yellow River silty soil /
composite stabilization /
unconfined compressive strength /
frost resistance /
moisture stability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱志铎. 粉土路基稳定理论与工程应用技术研究[D]. 南京:东南大学,2006.
[2] 白兰兰, 马文宁. 人工配制不同含砂率粉土性质研究[J].长江科学院院报,2018,35(2):95-97.
[3] 徐东升. 黄河三角洲粉土的力学特性及改性研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2010.
[4] 商庆森,刘树堂,姚占勇,等.二灰稳定黄河冲(淤)积粉土的研究[J].公路交通科技,1998(4):10-13.
[5] 商庆森,姚占勇,刘树堂.黄河三角洲地区道路用土的特性研究[J].公路交通科技,1996(3):10-14,32.
[6] 李振霞, 陈渊召. 二灰稳定低液限粉土底基层性能研究[J]. 公路, 2007,3(3):50-54.
[7] 姚占勇,艾贻中, 商庆森,等.黄河冲(淤)积粉质二灰土的配合比研究[J].岩土力学,2008(7):1943-1948.
[8] 姚占勇,练继建,艾贻中,等.黄河冲(淤)积粉质二灰土的压实特性研究[J].岩土工程学报,2007(5):664-670.
[9] 樊 亮,牟善友,李永振.乳化沥青复合稳定粉土的强度和水稳定性初探[J].公路工程,2019,44(4):178-183,238.
[10] 丁 毅. 土壤固化及其应用-筑路材料与技术的变革[M].北京:中国大地出版社,2009.
[11] 陈 贝,张东艳,杨浩亮,等.土壤固化剂对不同土质固化性能实验研究[J].高原农业,2018,2(3):299-306.
[12] 韩 森,张登良.沥青加固土研究[J].西安公路学院学报,1988(3):149-160.
[13] 朱洽斌, 毕玉峰,曹卫东, 等. 植物沥青对水泥稳定细粒土性能的影响[J].公路交通科技(应用技术版),2016,12(2):148-150,167.
[14] 陈 晔.沥青加固土在道路工程中应用的物理力学性能分析[J].石油沥青,1991(3):23-31.
[15] 董金梅,朱 华,边 疆,等.高分子材料改性粉土力学特性试验研究及机制探讨[J].岩石力学与工程学报,2014,33(增刊2):4326-4333.
[16] 交通部公路科学研究院. JTG E51—2009, 公路工程无机结合料稳定材料试验规程[S]. 北京:人民交通出版社,2009.
[17] 交通部公路科学研究院. JTG 3450—2019,公路路基路面现场测试规程[S].北京:人民交通出版社,2019.
[18] 中交路桥技术有限公司. JTG D50—2017, 公路沥青路面设计规范[S]. 北京:人民交通出版社,2017.
[19] 郭成超,钟燕辉,李 嘉,等.路基承载力的评定[J].华北水利水电学院学报,2006(2):85-87.
[20] 李迎春,钱春香,刘松玉,等.粉土固化稳定机理研究[J].岩土工程学报,2004(2):268-271.
[21] 赵京考,石元亮,刘孝义.土壤改良剂-乳化沥青的实验室制备方法的改进[J].土壤通报,2002(3):172-174.
[22] 陈保莲,王仁辉,程国香. 乳化沥青在农业上的应用[J].石油沥青,2001(2):44-47.
基金
交通运输部应用基础研究项目(2013-319-781-140);高速公路养护技术交通行业重点实验室开放基金课题(2017A1710)