长江科学院院报 ›› 2020, Vol. 37 ›› Issue (3): 137-143.DOI: 10.11988/ckyyb.20181201

• 信息技术应用 • 上一篇    下一篇

基于LSTM的水利信息分发实时推荐算法

卢焱鑫1, 李永峰2, 信明权1, 李效宁2, 刘树波1   

  1. 1.武汉大学 计算机学院, 武汉 430072;
    2.甘肃省水利厅 信息中心, 兰州 730000
  • 收稿日期:2018-11-08 出版日期:2020-03-01 发布日期:2020-05-09
  • 作者简介:卢焱鑫(1994-),男,河南南阳人,硕士研究生,主要从事信息分发实时推荐方面的研究。E-mail:1804710540@qq.com

Real-time Recommendation Algorithm for Water Information Distribution Based on Long-Short-Term Memory

LU Yan-xin1, LI Yong-feng2, XIN Ming-quan1, LI Xiao-ning2, LIU Shu-bo1   

  1. 1.School of Computer, Wuhan University, Wuhan 430072, China;
    2.Information Center, Gansu Provincial Water Resources Department, Lanzhou 730000, China
  • Received:2018-11-08 Online:2020-03-01 Published:2020-05-09

摘要: 随着水利信息化建设的逐步深入,水情信息的实时推荐需求越来越强烈。水利数据具有很强的时效性,要求推荐系统能够提供实时推荐服务。基于用户的协同过滤算法和基于信息的协同过滤算法(Item-based Collaborative Filtering,ItemCF)是推荐领域常用的2种算法,但两者在本质上都属于离线算法,不能满足水情信息分发实时性要求。提出了一种基于长短期记忆神经网络(Long-Short-Term Memory,LSTM)的水情信息分发实时推荐算法并对其优化。实验结果表明:基于LSTM的实时推荐算法在推荐时延方面最优,而优化的结合二分类模型和ItemCF推荐结果的实时推荐算法在推荐准确率方面最优,设计实现优化的基于LSTM的实时推荐算法综合效果较好,在保证水情信息推荐准确性的同时保证了推荐实时性。

关键词: 水情信息, 分发, 实时推荐, ItemCF, LSTM, 二分类模型, 优化

Abstract: The demand for real-time recommendation of water information is growing stronger with the deepening of water conservancy informatization in China. Since the data of water is highly time-sensitive, recommendation system is required to provide real-time recommendation services. User-based collaborative filtering and item-based collaborative filtering (ItemCF) are two commonly used algorithms in the recommendation field. Both, however, are offline algorithms in nature and cannot meet the requirement of real-time distribution of water information. In this paper, a real-time recommendation algorithm for water regime information distribution based on Long-Short-Term Memory (LSTM) is proposed and optimized to ensure the accuracy of water information recommendation while ensuring the real-time recommendation.

Key words: water information distribution, real-time recommendation, ItemCF, LSTM, dichotomous model, optimization

中图分类号: