通过对滨海软土三轴蠕变相关试验数据进行分析,发现黏滞系数不仅与时间有关,还与土所受到的偏压和围压有关。应变率与时间的关系呈现了非常明显的双对数线性关系,因此,黏滞系数是关于时间的幂函数;黏滞系数线性地依赖于偏压的变化,而与围压呈指数关系。最后建立了黏滞系数与时间、偏应力、围压之间的非线性关系表达式,并探讨了其相关参数的意义及取值范围。建立的黏滞系数表达式适用于描述非线性特征明显、应力水平较高的软土黏滞系数随时间、应力的变化规律,可推广到滨海软土直剪蠕变试验中。研究成果可为建立变黏滞系数的滨海软土及其他地区软土的非线性流变模型奠定基础。
Abstract
Analysis on triaxial creep test data of coastal soft soil reveals that viscosity coefficient is not only related to time, but also to the deviatoric pressure and confining pressure of soil. The relation between strain rate and time is of perfect double logarithmic linear characteristics. Hence, viscosity coefficient is a power function of time. Sensitivity analysis of deviatoric pressure unveils that viscosity coefficient is linearly dependent on deviatoric pressure and exponentially on confining pressure. Last but not the least, the nonlinear relations between viscosity coefficient with time, deviatoric stress and confining pressure are established and applied to the direct shear creep test of coastal soft soil. The proposed expression is applicable to describe the variation of viscosity coefficient of soft soil with apparent nonlinear characteristics and high stress level along with time and stress. In addition, factors affecting the relevant parameters are also put forward. The research findings lay a foundation for building the nonlinear rheological model coastal soft soil
关键词
滨海软土 /
黏滞系数 /
三轴蠕变 /
直剪蠕变 /
非线性流变模型
Key words
coastal soft clay /
viscosity coefficient /
triaxial creep /
direct shear creep /
nonlinear rheological model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈晓平. 对“软黏土地基黏弹塑性比奥固结的数值分析”讨论的答复. 岩土工程学报, 2002, 24(2):264-265.
[2] 杨爱武, 张 艳. 不同初始固结度吹填土蠕变特性研究. 岩土工程学报, 2013, 35(增刊1):222-226.
[3] 王军保, 刘新荣, 郭建强,等. 盐岩蠕变特性及其非线性本构模型. 煤炭学报, 2014, 39(3):445-451.
[4] 杨爱武, 张兆杰, 孔令伟. 不同应力状态下软黏土蠕变特性试验研究. 岩土力学, 2014, 35(增刊2):53-60.
[5] 雷华阳, 贾亚芳, 李 肖. 滨海软土非线性蠕变特性的试验研究. 岩石力学与工程学报, 2013, 31(增刊1):2806-2816.
[6] 张兆楠. 两种软土非线性蠕变特性与长期强度试验研究. 长春:吉林大学, 2015.
[7] MA B, MUHUNTHAN B, XIE X. Mechanisms of Quasi-preconsolidation Stress Development in Clays: A Rheological Model. Soils & Foundations, 2014, 54(3): 439-450.
[8] LI R D, YUE J C, ZHU C Z, et al. A Nonlinear Viscoelastic Rheological Model of Soft Soil Based on Fractional Order Derivative. Applied Mechanics & Materials, 2013, 438-439: 1056-1059.
[9] PELEG K. A Rheological Model of Nonlinear Viscoplastic Solids. Journal of Rheology, 1983, 27(5):411-431.
[10]曹树刚, 边 金, 李 鹏. 岩石蠕变本构关系及改进的西原正夫模型. 岩石力学与工程学报, 2002, 21(5):632-634.
[11]尹光志, 王登科, 张东明,等. 含瓦斯煤岩三维蠕变特性及蠕变模型研究. 岩石力学与工程学报, 2008, 27(增刊1):2631-2636.
[12]陈 浩, 杨春和, 任伟中. 蠕动滑坡变形机制的理论分析与模型试验研究. 岩石力学与工程学报, 2008, 27(增刊2):2705-2711.
[13]徐卫亚, 杨圣奇, 褚卫江. 岩石非线性黏弹塑性流变模型(河海模型)及其应用. 岩石力学与工程学报, 2006, 26(3):641-646.
[14]宋 飞, 赵法锁, 卢全中. 石膏角砾岩流变特性及流变模型研究. 岩石力学与工程学报, 2005, 24(15):2659-2664.
[15]熊良宵, 杨林德. 硬脆岩的非线性粘弹塑性流变模型.同济大学学报(自然科学版), 2010, 38(2):188-193.
[16]杨爱武. 结构性吹填软土流变特性及其本构模型研究. 天津:天津大学, 2011.
[17]王松鹤. 黄土蠕变特性试验研究. 杨凌:西北农林科技大学, 2010.
[18]张先伟, 王常明. 结构性软土的黏滞系数. 岩土力学, 2011, 32(11):3276-3282.
基金
中央高校专项基金(2042016kf1121)