考虑加速蠕变的深井巷道粉砂岩非线性黏弹塑性蠕变模型研究

高春艳,高全臣,牛建广

长江科学院院报 ›› 2016, Vol. 33 ›› Issue (12) : 99-104.

PDF(1110 KB)
PDF(1110 KB)
长江科学院院报 ›› 2016, Vol. 33 ›› Issue (12) : 99-104. DOI: 10.11988/ckyyb.20150797
岩土工程

考虑加速蠕变的深井巷道粉砂岩非线性黏弹塑性蠕变模型研究

  • 高春艳1,2,高全臣1,牛建广2
作者信息 +

Nonlinear Visco-elastic-plastic Creep Model in Consideration of Accelerated Creep for Sandrock in Deep Mine

  • GAO Chun-yan1,2, GAO Quan-chen1, NIU Jian-guang2
Author information +
文章历史 +

摘要

围岩流变特性是影响巷道工程安全性和稳定性的关键因素之一,本构模型的研究是岩石流变力学理论研究中最基本最重要的组成部分,同时也是将试验研究成果应用于实际工程的必要环节。综合采用试验研究、理论分析和数值试验模拟分析等研究方法,对淮南矿业集团朱集煤矿千米深井巷道粉砂岩的流变力学特性和本构方程的构建进行了分析研究。在参考大量相关理论和试验资料的基础上,提出改进的与应力以及时间有关的指数函数形式的非线性黏塑性元件,将之与Burgers蠕变模型串联形成能够模拟岩石三阶段蠕变特性的六元件组合模型。对朱集煤矿深井巷道粉砂岩进行高围压状态下三轴蠕变试验,获得了不同应力水平下的蠕变曲线,依据测得的轴向蠕变曲线对所提出的六元件蠕变模型进行参数辨识,验证了模型的合理性。

Abstract

The rheological property of surrounding rock is one of the key factors affecting the safety and stability of tunnel engineering. Research of constitutive model is the most essential and important part of rock rheological mechanics theory and is a necessary step to apply the results to practical engineering. A research method integrating experimental investigation, theoretical analysis and numerical simulation is applied in this paper to analyze the rheological mechanics characteristic and the establishment of constitutive equations of the sandrock of kilometers deep shaft roadway in Huainan Mining Group’s Zhuji coal mine. Based on a large number of relevant theoretical and experimental data,a nonlinear creep model expressed as an exponential function of stress and time is constructed to combine with Burgers model. The new creep model of six elements demonstrates the three phrases of rock creep process and takes into consideration the accelerated creep characteristic. Triaxial compressive rheology test under high confining pressure condition was performed on sandstone taken from Zhuji deep mine. Creep parameters for the proposed model were identified from the test creep data to verify the rationality of the model.

关键词

粉砂岩 / 深井 / 非线性黏弹塑性 / 蠕变模型 / 三轴蠕变试验

Key words

sandstone / deep mine / nonlinear visco-elastic-plastic / creep model / triaxial creep test

引用本文

导出引用
高春艳,高全臣,牛建广. 考虑加速蠕变的深井巷道粉砂岩非线性黏弹塑性蠕变模型研究[J]. 长江科学院院报. 2016, 33(12): 99-104 https://doi.org/10.11988/ckyyb.20150797
GAO Chun-yan, GAO Quan-chen, NIU Jian-guang. Nonlinear Visco-elastic-plastic Creep Model in Consideration of Accelerated Creep for Sandrock in Deep Mine[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(12): 99-104 https://doi.org/10.11988/ckyyb.20150797
中图分类号: TU452   

参考文献

[1] 孙 钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
[2] 郑雨天.岩石力学的粘弹塑性理论基础[M].北京:煤炭工业出版社,1988.
[3] 范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1993.
[4] GRIGGS D T. Creep of Rocks[J].Journal of Geology,1939,47(3):225-251.
[5] HAUPT M. A Constitutive Law for Rock Salt Based on Creep and Relaxation Tests[J].Rock Mechanics and Rock Engineering, 1991, 24(4): 179-206.
[6] MARANINI E,YAMAGUCHI T. A Non-associated Viscoplastic Model for the Behaviour of Granite in Triaxial Compression[J]. Mechanics of Materials,2001,33(5):283-293.
[7] 王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
[8]HAJIABDOLMAJID V K,KAISER P K,MARTIN C D.Modelling Brittle Failure of Rock[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(6):731-741.
[9] STERPI D, GIODA G. Visco-plastic Behaviour Around Advancing Tunnels in Squeezing Rock[J]. Rock Mechanics and Rock Engineering, 2007, 23(3):319-339.
[10]GUAN Z C, JIANG Y, TANABASHI Y, et al.A New Rheological Model and Its Application in Mountain Tunneling[J].Tunnelling and Underground Space Technology,2008, 23(3): 292-299.
[11]HOU Z M. Mechanical and Hydraulic Behavior of Rock Salt in the Excavation Disturbed Zone around Under-ground Facilities[J].International Journal of Rock Mechanics and Mining Science,2003,40(5):725-738.
[12]HOU Z M,WU W. Improvement of Design of Storage Cavity in Rock Salt by Using the Hou/Lux Constitutive Model with Consideration of Creep Rupture Criterion and Damage[J].Chinese Journal of Geotechnical Engineering,2003,25(1):105-108.
[13]朱昌星,阮怀宁,朱珍德,等.一种新的非线性粘弹塑性流变模型[J].长江科学院院报,2008, 25(4):53-55.
[14]罗润林,阮怀宁,朱昌星.基于塑性强化和粘性弱化的岩石蠕变模型[J].西南交通大学学报,2008,43(3):346-351.
[15]张治亮,徐卫亚,王 伟.向家坝水电站坝基挤压带岩石三轴蠕变试验及非线性黏弹塑性蠕变模型研究[J].岩石力学与工程学报,2011,30(1):132-140.
[16]王明洋,解东升,李 杰,等.深部岩体变形破坏动态本构模型[J].岩石力学与工程学报,2013,32(6):1112-1120.
[17]王新刚,胡 斌,连宝琴,等.改进的非线性黏弹塑性流变模型及花岗岩剪切流变模型参数辨识[J].岩土工程学报,2014,36(5):916-921.
[18]曹文贵,袁靖周,王江营,等.考虑加速蠕变的岩石蠕变过程损伤模拟方法[J]. 湖南大学学报(自然科学版),2013,40(2):15-20.
[19]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J]. 岩石力学与工程学报,2014, 23(19): 3226-3231.
[20]高春艳,高全臣,江 斌,等.朱集煤矿泥岩的流变试验与本构模型研究[J].长江科学院院报,2015, 32(5):76-81.

基金

河北省社会科学发展研究课题(2015031221,2015031233);河北省科技厅计划项目(164576110D);河北省重点学科技术经济及管理资助

PDF(1110 KB)

Accesses

Citation

Detail

段落导航
相关文章

/