为探讨硅粉对混凝土绝热温升的影响,配制了15组不同水胶比、不同硅粉掺量的硅粉混凝土配比试样作半绝热温升值测量,并通过热补偿法获得绝热温升值。结果表明:硅粉能降低混凝土绝热温升量,其中掺5%硅粉降低绝热温升值1.8~7.3 ℃,掺10%硅粉降低绝热温升值3.3~10.2 ℃,绝热温升降低程度受水胶比的影响;硅粉能在要求相同强度情况下显著降低混凝土绝热温升值。基于硅粉混凝土绝热温升值结果,通过回归分析获得绝热温升值预测式,并绘制了硅粉混凝土绝热温升值设计图,可供从事混凝土温度控制的技术人员参考。
Abstract
Microsilica is able to improve the strength and durability of concrete, but the effect of microsilica on adiabatic temperature rise of concrete is unclear. Researchers had even obtained contradictory findings. In this study, 15 concrete samples mixed with microsilica of varied content at different water-binder ratios were produced for semi-adiabatic temperature rise experimental measurement, and then the adiabatic temperature rise of each concrete sample was calculated with the heat loss compensation technique. Results demonstrated that the addition of microsilica could suppress the adiabatic temperature rise at the same water-binder ratio and the same strength. The adiabatic temperature rise amounted to 1.8~7.3 ℃ in the presence of 5% microsilica, and 3.3~10.2 ℃ in the presence of 10% microsilica. The suppression of adiabatic temperature rise was affected by water-binder ratio. On the basis of the result of adiabatic temperature rise, the predication formula and design chart for predicting adiabatic temperature rise of microsilica concrete were presented.
关键词
大体积混凝土 /
硅粉 /
绝热温升 /
热量补偿 /
水胶比
Key words
mass concrete /
microsilica /
adiabatic temperature rise /
heat loss compensation /
water-binder ratio
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱鹏飞,宫经伟,唐新军.大体积混凝土胶凝材料体系水化放热规律研究[J].长江科学院院报,2018,35(6):111-116.
[2] 张锡祥.低热微膨胀水泥应用实测资料分析[J].长江科学院院报,1993,10(2):9-15.
[3] 樊启祥,杨华全,李文伟,等.两种低热与中热硅酸盐水泥混凝土热力学特性对比分析[J].长江科学院院报,2018,35(12):133-137.
[4] 徐佰林,黄耀英,张高索,等.混凝土面板堆石坝施工期面板温控措施优选[J].人民黄河,2017,39(10):121-124.
[5] 朱芳芳.浅析大体积混凝土内外温差控制技术[J].四川水泥,2017(5):287,295.
[6] 张晓果,杨进波,刘 虎.水化热抑制剂对大体积混凝土性能影响的研究[J].商品混凝土,2017(5):33-35,22.
[7] MALHOTRA V M, RAMACHANDRAN V S, FELDMAN R F, et al. Condensed Silica Fume in Concrete [M]. Florida, USA: CRC Press, 1987.
[8] ACI Committee. Guide for the Use of Silica Fume in Concrete[M]. Michigan, USA: American Concrete Institute, 2006.
[9] KWAN A K H. Use of Condensed Silica Fume for Making High-strength, Self-consolidating Concrete[J]. Canadian Journal of Civil Engineering, 2000, 27(4): 620-627.
[10]陈全滨,罗作球,袁启涛,等.超细粉对高性能超高泵送混凝土性能的影响研究[J].施工技术,2015,44(8):118-121.
[11]HARRISON T A. Early-Age Thermal Crack Control in Concrete[R]. London, UK: Construction Industry Research and Information Association,1992.
[12]MELAND I. Influence of Condensed Silica Fume and Fly Ash on the Heat Evolution in Cement Pastes[J]. ACI Special Publication, 1983, 79(2): 665-676.
[13]SANCHEZ DE ROJAS M I, FRIAS M. The Influence of Silica Fume on the Heat of Hydration of Portland Cement [J].ACI Special Publication,1995, 153: 829-844.
[14]KADRI E H, DUVAL R. Hydration Heat Kinetics of Concrete with Silica Fume [J].Construction and Building Materials, 2009, 23(11): 3388-3392.
[15]李昱坤,方荣杰,吴 限,等.水胶比与混凝土温控措施的响应关系分析[J].混凝土,2017(14):48-49.
[16]LANGAN B W, WENG K, WARD M A. Effect of Silica Fume and Fly Ash on Heat of Hydration of Portland Cement[J].Cement and Concrete Research,2002,32(7):1045-1051.
[17]谢 丽,吴胜兴.水灰比对混凝土早期收缩影响的研究[J].建筑科学,2007,23(1):54-57.
[18]刘建忠,孙 伟,缪昌文,等.超高强混凝土用低水胶比浆体的水化热研究[J].建筑材料学报,2010,13(2):139-142,168.
[19]涂玉波,张亮亮,郝挺宇,等.大体积钢铁渣粉混凝土绝热温升与施工模拟试验[J].混凝土,2015(3):152-155.
[20]NG P L,NG I Y T,KWAN A K H. Heat Loss Compensation in Semi-adiabatic Curing Test of Concrete[J].ACI Materials Journal, 2008, 105(1):52-61.
[21]NG P L,NG I Y T,FUNG W W S,et al. Adiabatic Temperature Rise of Pulverized Fuel Ash (PFA) Concrete [J]. Advanced Materials Research, 2011,168-170:570-577.
基金
广东省绿色建材与装配式建筑工程技术研究中心开放基金项目(ZCZX201803);欧盟Marie Sktodowska-Curie Actions项目 (751461);佛山市科技计划项目 (2016AB000031)