PDF(1950 KB)
PDF(1950 KB)
PDF(1950 KB)
引江济淮船闸闸首施工期开裂风险与防裂分析
Crack Analysis and Crack Prevention of Large Lock Head for Water Diversion Project from Yangtze River to Huaihe River during Construction
与混凝土坝相比,船闸闸首、泵站类薄壁大体积混凝土结构体型相对较小,但结构型式与受力复杂、约束明显且采用泵送高性能混凝土浇筑,早期混凝土放热量较常态混凝土大且发热快,施工期比大坝更易产生温度裂缝,其防裂设计成为施工质量控制的难点之一。结合在建的引江济淮枞阳船闸上闸首工程,采用三维有限元法仿真分析手段,模拟真实环境、材料、结构、温控措施的影响,分析结构施工期温度场、应力场以及开裂风险,并提出针对性的防裂措施。研究表明,输水廊道、墩墙、空箱及启闭机房周边大体积混凝土等功能性部位为高风险开裂部位,实现控温浇筑、通水冷却以及表面保温的多措并举且差异化控制,能够大大降低其开裂风险,可为引江济淮工程薄壁结构防裂设计提供参考。
Compared to concrete dams, the thin-walled mass concrete structures of ship lock heads and pumping stations are relatively smaller in size. However, their structural forms and stress patterns are more complex, with significant constraints. These structures are constructed using pumped high-performance concrete, which generates more heat and heats up faster during the early stages than regular concrete. As a result, they are more prone to temperature-induced cracks during construction, making crack prevention a significant challenge in quality control. With the upper lock head project at Zongyang shiplock of the Yangtze-to-Huaihe River Diversion Project as a research background, we simulated and assessed the impacts of environment, materials, structure, and temperature control measures by using three-dimensional finite element approach. By analyzing temperature field, stress field, and crack resistance, we developed temperature control measures for the project. Our research identifies some functional areas of the upper lock head structure as more prone to cracking. These areas include the bottom plate, water conveyance gallery, pier wall, mass concrete around the empty box and the hoist room. Implementing a combination of temperature control measures, such as temperature-controlled pouring, water cooling, and surface insulation, with differentiated control strategies, can significantly reduce the risk of cracking. The findings offer valuable reference for crack prevention design in thin-walled structures of the Yangtze-to-Huaihe River Diversion Project.
薄壁大体积混凝土 / 船闸闸首 / 三维有限元 / 抗裂安全度 / 抗裂风险 / 防裂设计 / 引江济淮工程
thin-wall mass concrete / lock head / three-dimensional finite element / crack resistance safety / cracking risk / crack prevention design / water diversion project from Yangtze River to Huaihe River
| [1] |
陈冠希, 郭永成. 泵送混凝土关键技术工程实践与应用分析[J]. 建筑结构, 2021, 51(增刊1): 2377-2380.
(
|
| [2] |
程井, 魏李威, 张玉鑫, 等. 基于水化度的泵送混凝土温升模型及参数反演[J]. 水利水电科技进展, 2021, 41(2): 75-81.
(
|
| [3] |
牛志国, 王新. 船闸水工建筑物设计与工程实践[M]. 南京: 东南大学出版社, 2019.
(
|
| [4] |
夏小迪, 汤建宏. 省水船闸的布置方案与结构设计[J]. 水运工程, 2022(增刊1):124-129, 154.
(
|
| [5] |
陈灿明, 郭壮, 等. 闸首空箱顶板裂缝成因分析与加固方案探讨[J]. 水利与建筑工程学报, 2018, 16(5): 157-161.
(
|
| [6] |
郭云, 邱勇, 向敏, 等. 某船闸上闸首底板裂缝产生原因分析及处理[J]. 中国农村水利水电, 2013(1):132-134.
某船闸上闸首原底板裂缝的存在,对上闸首闸体稳定产生不利影响,通过对裂缝产生的原因及危害性的分析,制定了处理方案。有效地遏制了裂缝的发育,保证了闸体的结构强度和整体稳定性。
(
某船闸上闸首原底板裂缝的存在,对上闸首闸体稳定产生不利影响,通过对裂缝产生的原因及危害性的分析,制定了处理方案。有效地遏制了裂缝的发育,保证了闸体的结构强度和整体稳定性。
|
| [7] |
沈思朝, 颉志强, 王首豪. 基于数值仿真的水闸温控措施敏感性分析[J]. 长江科学院院报, 2022, 39(1): 146-154.
水闸属于薄壁大体积混凝土结构,实践表明,若不采取温控措施,尤其是低温季节施工的混凝土水闸结构在浇筑初期极易出现表面裂缝,后期易扩展为贯穿性裂缝。弄清各温控措施对水闸温度场、应力场及开裂风险的影响,是制定水闸温控指标和防裂措施的前提。以某在建的低温季节浇筑水闸工程为研究对象,利用三维有限元法,计算分析了在低温季节浇筑施工时水闸结构的温度场、应力场特性,重点进行了开裂风险的敏感性分析。结果表明,单一温控措施的防裂效果有限,控温浇筑、表面保温、冷却通水必须相互协调,能有效控制水闸温度应力并避免裂缝产生。
(
Sluice is a large-volume concrete structure with thin walls. Practice have shown that concrete sluice structure constructed in low-temperature season is subjected to surface cracks in the early stage of pouring if no temperature control measure is taken, and such surface cracks would penetrate through in later stage. To clarify the influence of temperature control measures on the temperature field, stress field and cracking risk of the sluice is the prerequisite of determining temperature control indices and formulating anti-cracking measures. With a sluice project under construction in low-temperature season as a case study, we examined the spatial and temporal characteristics of temperature field and stress field by simulating the construction process using 3D finite element method. On this basis, we analyzed the sensitivities of stress to pouring temperature, surface temperature preservation, and water cooling. Results manifested that single measure has limited effect. Multiple measures including temperature-control pouring, surface temperature preservation, and water cooling must be coordinated to effectively control the temperature stress of the sluice and avoid cracks.
|
| [8] |
王凤娥, 陈亚丁, 孟佳阳. 船闸大体积混凝土仿真计算及温控研究[J]. 中国水运(下半月), 2020, 20(6):128-129,217.
(
|
| [9] |
李松辉, 李玥, 孙祥鹏. 水闸混凝土结构关键部位温控防裂研究[J]. 水利水电技术, 2017, 48(12):45-49.
(
|
| [10] |
苏超, 张思怡, 杨旸. 横拉门船闸闸首施工期混凝土防裂措施研究[J]. 水力发电, 2019, 45(10):64-69.
(
|
| [11] |
李扬. 引江济淮枞阳船闸混凝土配合比试验分析报告[R]. 武汉: 长江科学院, 2019.
(
|
| [12] |
赵永祥, 刘波, 高玉杰, 等. 预成孔置换强夯法在软土地基中的试验研究[J]. 长江科学院院报, 2022, 39(10):116-120,127.
强夯置换法是一种软土地基处理方法,存在置换墩不着底、工后沉降大、施工效率低等缺点。针对强夯置换法的上述缺点,提出了一种新型软土地基处理方法——预成孔置换强夯法。该方法通过将高能级强夯法与预先成孔填料相结合,达到提高地基承载力、减小工后沉降的目的。通过开展试验区(24 m×24 m)试验,在夯后进行平板载荷试验、重型动力触探试验及充水预压试验,验证了该方法的可行性,并最终将该技术成功应用于整个软土地基场地。试验结果表明:夯后动力触探击数提高了260%以上,复合地基承载力达到280 kPa,储罐基础沉降最大值、相邻测点沉降差均远小于规范要求。该方法的成功应用对于今后类似地基的处理具有一定的参考意义。
(
Dynamic replacement,as a treatment method for soft soil foundation,has some shortcomings such as the gap between the replacement columns and the basement,large post-construction settlement,and low construction efficiency. In view of this,a dynamic replacement method with prebored filling is proposed to enhance the bearing capacity of foundation and reduce the post-construction settlement by tamping the prebored columns filled with materials under high energy level. The method is verified feasible through plate loading test,heavy dynamic penetration test and water filling and preloading test after tamping,and finally successfully applied to the whole soft soil foundation site. The number of dynamic sounding blows after tamping increased by over 260%,the bearing capacity of composite foundation reached 280 kPa,and the maximum settlement of tank foundation and the settlement difference of adjacent measuring points are far less than the requirements of specification. The successful application of this method serves as reference for the treatment of similar foundation.
|
| [13] |
曹邱林, 孟怡凯. 微桩群复合地基水闸闸室结构有限元分析[J]. 人民长江, 2013, 44(4):31-34,47.
(
|
| [14] |
郭红亮, 石运深, 焦雨佳, 等. 汉江兴隆水利枢纽泄水闸地基处理设计[J]. 人民长江, 2015, 46(15): 26-29.
(
|
| [15] |
NB/T 35092—2017, 混凝土坝温度控制设计规范[S]. 北京: 中国电力出版社, 2017.
(NB/T 35092—2017, Design Code for Temperature Control of Concrete Dam[S]. BeiJing: China Electric Power Press, 2017. (in Chinese))
|
/
| 〈 |
|
〉 |