泵送混凝土在拌合物状态及各材料用量上与常态混凝土相比存在较大差异,该差异会在硬化混凝土各项性能中得到体现。为了研究水工泵送混凝土和常态混凝土在力学及干缩性能方面的差异,设置了3组对比试验。在同水胶比下,随着水胶比的增大,泵送混凝土相对于常态混凝土在抗压强度、抗拉强度、拉压比及弹性模量等指标方面表现出明显的优势。在不同水胶比下,泵送混凝土的干缩率也均大于常态混凝土。28,60,90 d龄期的泵送混凝土和常态混凝土的干缩率受水胶比影响显著,而3 d和7 d龄期的干缩率则受水胶比影响不明显。2种混凝土早期干缩率发展较快,后期则相对缓慢,干缩率的平均增长速率随龄期增加呈幂函数变化。该研究可以为泵送混凝土在水利工程中的应用提供一定的借鉴。
Abstract
Hydraulic pumping concrete differs greatly from normal concrete in terms of mixture state and material dosage. These differences will be reflected in the performance of hardened concrete. In order to study the differences in mechanics and shrinkage properties of hydraulic pumping concrete and normal concrete, we designed three groups of comparative test. Results revealed that in the presence of given water-binder ratio, pumping concrete was superior to normal concrete in compressive strength, tensile strength, tension-compression ratio and elastic modulus with the increase of water-binder ratio; while under different water-binder ratios, the shrinkage rate of pumping concrete was still higher than that of normal concrete. Moreover, the shrinkage rate of pumping concrete and normal concrete at the age of 28d, 60d and 90d were affected significantly by water-binder ratio; whereas the shrinkage rate at the age of 3d and 7d were not affected obviously. The shrinkage of the two concretes developed rapidly in the early stage, but was slowly in later stage. The average growth rate of drying shrinkage is in a power function relationship with age.
关键词
泵送混凝土 /
常态混凝土 /
干缩性能 /
水胶比 /
力学性能
Key words
pumping concrete /
normal concrete /
shrinkage performance /
shrinkage rate /
mechanical properties
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 马跃峰,朱岳明,曹为民,等.闸墩内部水管冷却和表面保温措施的抗裂作用研究[J].水利学报,2006,37(8):963-968.
[2] ZHOU J M, HAO R X. Effect of Shrinkage Reducing Admixture on properties of Pumping Concrete[C]∥Advanced Manufacturing Technology: Proceedings of the 3rd International Conference on Manufacturing Science and Engineering (ICMSE 2012), Xiamen, China,March 27-29, 2012: 560-564.
[3] GAO H. Performance and Mechanism Study on C50 Micro-expansion Polypropylene Fiber Reinforced Anti-cracking Pumping Concrete[C]∥Advanced Engineering Materials II: Proceedings of the 2nd International Conference on Advanced Engineering Materials and Technology (AEMT 2012), Zhuhai, China, July 6-8, 2012:1808-1812.
[4] 彭玉林,龚爱民,宋天文,等.掺粉煤灰泵送混凝土在水工隧洞工程中的应用前景[J].水利水电技术,2007,38(9):36-38,57.
[5] 支拴喜,陈尧隆.C50泵送HF混凝土在金盆水库泄洪建筑物上的应用[J].水力发电学报,2005,24(6):49-52.
[6]AREZOUMANDI M, VOLZ J S. Effect of Fly Ash Replacement Level on the Shear Strength of High-volume Fly Ash Concrete Beams[J]. Journal of Cleaner Production, 2013, 59: 120-130.
[7] 秦子鹏,杜应吉,田 艳.寒旱区水利工程大掺量粉煤灰混凝土试验研究[J].长江科学院院报,2013,30(9):101-105,118.
[8] 程伟峰,何金荣,林星平,等.长时间运输高性能泵送混凝土配比优化措施研究[J].武汉大学学报(工学版),2014,47(1):59-65.
[9] 郑 丹,李文伟,陈文耀.全级配混凝土干缩变形性能研究[J].长江科学院院报,2010, 27(2):64-67,74.
[10]ZHANG J, HAN Y D, GAO Y, et al. Effects of Water-Binder Ratio and Coarse Aggregate Content on Interior Humidity, Autogenous Shrinkage, and Drying Shrinkage of Concrete[J]. Journal of Materials in Civil Engineering, 2014, 26(1): 184-189.
[11]BEDERINA M, GOTTEICHA M, BELHADJ B, et al. Drying Shrinkage Studies of Wood Sand Concrete- Effect of Different Wood Treatments[J].Construction and Building Materials,2012, 36(11):1066-1075.
[12]高 原,张 君,孙 伟.干湿循环下混凝土湿度与变形的测量[J].清华大学学报(自然科学版),2012, 52(2):144-149.
[13]GAO Yuan, ZHANG Jun, LUOSUN Yi-ming, et al. Shrinkage Stress in Concrete under Dry-wet Cycles: An Example with Concrete Column[J]. Mechanics of Time-dependent Materials, 2014, 18(1): 229-252.
[14]SOLIMAN A M, NEHDI M L. Effects of Shrinkage Reducing Admixture and Wollastonite Microfiber on Early-age Behavior of Ultra-high Performance Concrete[J].Cement Concrete Composites,2014,46(2):81-89.
[15]SAJE D, BANDELJ B, SUSTERSIC J, et al. Shrinkage and Creep of Steel Fiber Reinforced Normal Strength Concrete[J]. Journal of Testing and Evaluation: A Multidisciplinary Forum for Applied Sciences and Engineering, 2013, 41(6): 959-969.
[16]KALKAN I, LEE J H. Effect of Shrinkage Restraint on Deflections of Reinforced Self-compacting Concrete Beams[J]. KSCE Journal of Civil Engineering, 2013, 17(7): 1672-1681.
基金
新疆生产建设兵团工业高新技术科技攻关与成果项目(2015AB026);石河子大学高层次人才科研启动项目(CRZX201435);石河子大学应用基础研究青年项目(2015ZRKXYQ13,2015ZRKXYQLH01)